Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Ottakam Thotiyl, 2013, A stable cathode for the aprotic Li-O2 battery, Nat. Mater., 12, 1050, 10.1038/nmat3737
Kim, 2013, Metallic anodes for next generation secondary batteries, Chem. Soc. Rev., 42, 9011, 10.1039/c3cs60177c
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. (Weinh), 3, 1500213, 10.1002/advs.201500213
Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71
Busche, 2016, Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts, Nat. Chem., 8, 426, 10.1038/nchem.2470
Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w
Gauthier, 2015, Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights, J. Phys. Chem. Lett., 6, 4653, 10.1021/acs.jpclett.5b01727
Gireaud, 2006, Lithium metal stripping/plating mechanisms studies: a metallurgical approach, Electrochem. Commun., 8, 1639, 10.1016/j.elecom.2006.07.037
Zu, 2016, Breaking down the crystallinity: the path for advanced lithium batteries, Adv. Energy Mater, 6, 1501933, 10.1002/aenm.201501933
Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041
Ozhabes, 2015, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv
Tu, 2015, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries, Acc. Chem. Res., 48, 2947, 10.1021/acs.accounts.5b00427
Lu, 2015, Stable cycling of lithium metal batteries using high transference number electrolytes, Adv. Energy Mater, 5, 1402073, 10.1002/aenm.201402073
Zhou, 2016, SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life, Adv. Energy Mater, 6, 1502214, 10.1002/aenm.201502214
Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362
Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513
Yamada, 2015, Review—superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 162, A2406, 10.1149/2.0041514jes
Suo, 2015, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595
Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y
Liu, 2015, Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries, Adv. Mater., 27, 5241, 10.1002/adma.201501490
Heine, 2014, Coated lithium powder (CLiP) electrodes for lithium-metal batteries, Adv. Energy Mater, 4, 1300815, 10.1002/aenm.201300815
Cheng, 2015, Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries, ACS Nano, 9, 6373, 10.1021/acsnano.5b01990
Zhang, 2016, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28, 2155, 10.1002/adma.201504117
Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009
Cheng, 2014, Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries, Small, 10, 4257, 10.1002/smll.201470130
Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058
Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581
Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409
Huang, 2014, Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures, Nat. Commun., 5, 3015, 10.1038/ncomms4015
Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124
Liang, 2015, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano Lett., 15, 2910, 10.1021/nl5046318
Chu, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10
Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152
Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526
Zhao, 2016, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater., 3, 77, 10.1016/j.ensm.2016.01.007
Xiong, 2014, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, J. Power Sources, 246, 840, 10.1016/j.jpowsour.2013.08.041
Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436
Pan, 2015, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91, 134116, 10.1103/PhysRevB.91.134116
Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460
Yabuuchi, 2003, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sourc., 119–121, 171, 10.1016/S0378-7753(03)00173-3
Jung, 2014, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4, 1300787, 10.1002/aenm.201300787
Cheng, 2014, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries, Nano Energy, 4, 65, 10.1016/j.nanoen.2013.12.013
Ferrese, 2014, Mechanical deformation of a lithium-metal anode due to a very stiff separator, J. Electrochem. Soc., 161, A1350, 10.1149/2.0911409jes
Shin, 2015, Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries, ACS Appl. Mater. Inter., 7, 23700, 10.1021/acsami.5b07730
Luo, 2015, A thermally conductive separator for stable Li metal anodes, Nano Lett., 15, 6149, 10.1021/acs.nanolett.5b02432
Hendrickson, 2015, Model membrane-free Li–S batteries for enhanced performance and cycle life, Adv. Sci. (Weinh), 2, 1500068, 10.1002/advs.201500068