Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries

Chem - Tập 2 Số 2 - Trang 258-270 - 2017
Xin‐Bing Cheng1, Chong Yan1,2, Xiang Chen1, Chao Guan1, Jia‐Qi Huang1, Hong‐Jie Peng1, Rui Zhang1, Shuting Yang2, Qiang Zhang1
1Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
2National & Local Joint Engineering Laboratory for Motive Power and Key Materials, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644

Ottakam Thotiyl, 2013, A stable cathode for the aprotic Li-O2 battery, Nat. Mater., 12, 1050, 10.1038/nmat3737

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Kim, 2013, Metallic anodes for next generation secondary batteries, Chem. Soc. Rev., 42, 9011, 10.1039/c3cs60177c

Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K

Park, 2014, A highly reversible lithium metal anode, Sci. Rep., 4, 3815, 10.1038/srep03815

Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. (Weinh), 3, 1500213, 10.1002/advs.201500213

Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71

Busche, 2016, Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts, Nat. Chem., 8, 426, 10.1038/nchem.2470

Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w

Gauthier, 2015, Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights, J. Phys. Chem. Lett., 6, 4653, 10.1021/acs.jpclett.5b01727

Gireaud, 2006, Lithium metal stripping/plating mechanisms studies: a metallurgical approach, Electrochem. Commun., 8, 1639, 10.1016/j.elecom.2006.07.037

Zu, 2016, Breaking down the crystallinity: the path for advanced lithium batteries, Adv. Energy Mater, 6, 1501933, 10.1002/aenm.201501933

Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041

Ozhabes, 2015, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv

Tu, 2015, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries, Acc. Chem. Res., 48, 2947, 10.1021/acs.accounts.5b00427

Lu, 2015, Stable cycling of lithium metal batteries using high transference number electrolytes, Adv. Energy Mater, 5, 1402073, 10.1002/aenm.201402073

Zhou, 2016, SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life, Adv. Energy Mater, 6, 1502214, 10.1002/aenm.201502214

Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362

Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513

Yamada, 2015, Review—superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 162, A2406, 10.1149/2.0041514jes

Suo, 2015, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595

Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y

Liu, 2015, Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries, Adv. Mater., 27, 5241, 10.1002/adma.201501490

Heine, 2014, Coated lithium powder (CLiP) electrodes for lithium-metal batteries, Adv. Energy Mater, 4, 1300815, 10.1002/aenm.201300815

Cheng, 2015, Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries, ACS Nano, 9, 6373, 10.1021/acsnano.5b01990

Zhang, 2016, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28, 2155, 10.1002/adma.201504117

Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009

Cheng, 2014, Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries, Small, 10, 4257, 10.1002/smll.201470130

Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058

Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581

Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409

Huang, 2014, Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures, Nat. Commun., 5, 3015, 10.1038/ncomms4015

Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124

Liang, 2015, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano Lett., 15, 2910, 10.1021/nl5046318

Chu, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10

Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152

Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526

Zhao, 2016, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater., 3, 77, 10.1016/j.ensm.2016.01.007

Xiong, 2014, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, J. Power Sources, 246, 840, 10.1016/j.jpowsour.2013.08.041

Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436

Pan, 2015, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91, 134116, 10.1103/PhysRevB.91.134116

Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460

Yabuuchi, 2003, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sourc., 119–121, 171, 10.1016/S0378-7753(03)00173-3

Jung, 2014, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4, 1300787, 10.1002/aenm.201300787

Cheng, 2014, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries, Nano Energy, 4, 65, 10.1016/j.nanoen.2013.12.013

Ferrese, 2014, Mechanical deformation of a lithium-metal anode due to a very stiff separator, J. Electrochem. Soc., 161, A1350, 10.1149/2.0911409jes

Shin, 2015, Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries, ACS Appl. Mater. Inter., 7, 23700, 10.1021/acsami.5b07730

Luo, 2015, A thermally conductive separator for stable Li metal anodes, Nano Lett., 15, 6149, 10.1021/acs.nanolett.5b02432

Hendrickson, 2015, Model membrane-free Li–S batteries for enhanced performance and cycle life, Adv. Sci. (Weinh), 2, 1500068, 10.1002/advs.201500068

Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913