Impavido attenuates inflammation, reduces atherosclerosis, and alters gut microbiota in hyperlipidemic mice
Tài liệu tham khảo
Burza, 2018, Leishmaniasis, Lancet, 392, 951, 10.1016/S0140-6736(18)31204-2
Torres-Guerrero, 2017, Leishmaniasis: a review, F1000Research, 6, 750, 10.12688/f1000research.11120.1
Fernández-Figueroa, 2012, Disease severity in patients infected with Leishmania mexicana relates to IL-1beta, PLoS Negl. Trop. Dis., 6, e1533, 10.1371/journal.pntd.0001533
Gurung, 2015, An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis, J. Clin. Invest., 125, 1329, 10.1172/JCI79526
Novais, 2015, Genomic profiling of human Leishmania braziliensis lesions identifies transcriptional modules associated with cutaneous immunopathology, J. Invest. Dermatol., 135, 94, 10.1038/jid.2014.305
Charmoy, 2016, The Nlrp3 inflammasome, IL-1beta, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice, Eur. J. Immunol., 46, 897, 10.1002/eji.201546015
Santos, 2018, IL-1beta production by intermediate monocytes is associated with immunopathology in cutaneous leishmaniasis, J. Invest. Dermatol., 138, 1107, 10.1016/j.jid.2017.11.029
Dorlo, 2012, Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis, J. Antimicrob. Chemother., 67, 2576, 10.1093/jac/dks275
Ríos-Marco, 2011, Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells, J. Pharmacol. Exp. Ther., 336, 866, 10.1124/jpet.110.172890
Iacano, 2019, Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1beta release, Sci. Rep., 9, 10.1038/s41598-019-47610-w
Knuplez, 2021, The anti-parasitic drug miltefosine suppresses activation of human eosinophils and ameliorates allergic inflammation in mice, Br. J. Pharmacol., 178, 1234, 10.1111/bph.15368
Weller, 2009, Miltefosine inhibits human mast cell activation and mediator release both in vitro and in vivo, J. Invest. Dermatol., 129, 496, 10.1038/jid.2008.248
Moore, 2011, Macrophages in the pathogenesis of atherosclerosis, Cell, 145, 341, 10.1016/j.cell.2011.04.005
Duewell, 2010, NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals, Nature, 464, 1357, 10.1038/nature08938
Libby, 2002, Inflammation and atherosclerosis, Circulation, 105, 1135, 10.1161/hc0902.104353
Tall, 2015, Cholesterol, inflammation and innate immunity, Nat. Rev. Immunol., 15, 104, 10.1038/nri3793
Razani, 2012, Autophagy links inflammasomes to atherosclerotic progression, Cell Metab., 15, 534, 10.1016/j.cmet.2012.02.011
Ridker, 2018, Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS), Eur. Heart J., 39, 3499, 10.1093/eurheartj/ehy310
Grebe, 2018, NLRP3 inflammasome and the IL-1 pathway in atherosclerosis, Circ. Res., 122, 1722, 10.1161/CIRCRESAHA.118.311362
Ridker, 2017, Antiinflammatory therapy with canakinumab for atherosclerotic disease, N. Engl. J. Med. Overseas. Ed., 377, 1119, 10.1056/NEJMoa1707914
Zihlif, 2016, Association between gasdermin A and gasdermin B polymorphisms and susceptibility to adult and childhood asthma among Jordanians, Genet. Test. Mol. Biomarkers, 20, 143, 10.1089/gtmb.2015.0174
He, 2015, Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion, Cell Res., 25, 1285, 10.1038/cr.2015.139
Man, 2015, Gasdermin D: the long-awaited executioner of pyroptosis, Cell Res., 25, 1183, 10.1038/cr.2015.124
Kayagaki, 2015, Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling, Nature, 526, 666, 10.1038/nature15541
Evavold, 2018, The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages, Immunity, 48, 35, 10.1016/j.immuni.2017.11.013
Liu, 2016, Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature, 535, 153, 10.1038/nature18629
Opoku, 2021, Gasdermin D mediates inflammation-induced defects in reverse cholesterol transport and promotes atherosclerosis, Front. Cell Dev. Biol., 9, 10.3389/fcell.2021.715211
Yao, 2022, HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells, Cell Death Discov., 8, 112, 10.1038/s41420-022-00906-9
Cheng, 2021, Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy, Acta Pharmacol. Sin., 42, 954, 10.1038/s41401-020-00525-z
Xing, 2020, Salidroside decreases atherosclerosis plaque formation via inhibiting endothelial cell pyroptosis, Inflammation, 43, 433, 10.1007/s10753-019-01106-x
Puylaert, 2022, Gasdermin D deficiency limits the transition of atherosclerotic plaques to an inflammatory phenotype in ApoE knock-out mice, Biomedicines, 10, 10.3390/biomedicines10051171
Wang, 2011, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, 472, 57, 10.1038/nature09922
Tang, 2014, The contributory role of gut microbiota in cardiovascular disease, J. Clin. Invest., 124, 4204, 10.1172/JCI72331
Koeth, 2014, gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO, Cell Metab., 20, 799, 10.1016/j.cmet.2014.10.006
Liao, 2012, Macrophage autophagy plays a protective role in advanced atherosclerosis, Cell Metab., 15, 545, 10.1016/j.cmet.2012.01.022
Ouimet, 2011, Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase, Cell Metab., 13, 655, 10.1016/j.cmet.2011.03.023
Snider, 2018, Choline transport links macrophage phospholipid metabolism and inflammation, J. Biol. Chem., 293, 11600, 10.1074/jbc.RA118.003180
Sanchez-Lopez, 2019, Choline uptake and metabolism modulate macrophage IL-1beta and IL-18 production, Cell Metab., 29, 1350, 10.1016/j.cmet.2019.03.011
Leake, 2019, Choline uptake is vital for IL-1beta-driven inflammation, Nat. Rev. Rheumatol., 15, 320, 10.1038/s41584-019-0228-4
McGillicuddy, 2009, Inflammation impairs reverse cholesterol transport in vivo, Circulation, 119, 1135, 10.1161/CIRCULATIONAHA.108.810721
Libby, 2021, Inflammation in atherosclerosis-no longer a theory, Clin. Chem., 67, 131, 10.1093/clinchem/hvaa275
Mankowski, 2019, Long-term impact of sepsis on cardiovascular health, Intensive Care Med., 45, 78, 10.1007/s00134-018-5173-1
Starr, 2014, A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis, PLoS One, 9, 10.1371/journal.pone.0115705
Malik, 2011, Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport, J. Lipid Res., 52, 951, 10.1194/jlr.M011122
Brown, 2018, Microbial modulation of cardiovascular disease, Nat. Rev. Microbiol., 16, 171, 10.1038/nrmicro.2017.149
Zhu, 2017, Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects, Circulation, 135, 1671, 10.1161/CIRCULATIONAHA.116.025338
Ríos-Marco, 2016, Pleiotropic effects of antitumour alkylphospholipids on cholesterol transport and metabolism, Exp. Cell Res., 340, 81, 10.1016/j.yexcr.2015.12.012
Jiménez-López, 2010, Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids, Lipids Health Dis., 9, 33, 10.1186/1476-511X-9-33
Marco, 2009, Hexadecylphosphocholine alters nonvesicular cholesterol traffic from the plasma membrane to the endoplasmic reticulum and inhibits the synthesis of sphingomyelin in HepG2 cells, Int. J. Biochem. Cell Biol., 41, 1296, 10.1016/j.biocel.2008.11.004
Park, 2021, Lipid raft-disrupting miltefosine preferentially induces the death of colorectal cancer stem-like cells, Clin. Transl. Med., 11, e552, 10.1002/ctm2.552
Jiang, 2021, Caspase-11-Gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis, Front. Pharmacol., 12
Yoshida, 2018, Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis, Circulation, 138, 2486, 10.1161/CIRCULATIONAHA.118.033714
Jonsson, 2017, Role of gut microbiota in atherosclerosis, Nat. Rev. Cardiol., 14, 79, 10.1038/nrcardio.2016.183
Jie, 2017, The gut microbiome in atherosclerotic cardiovascular disease, Nat. Commun., 8, 845, 10.1038/s41467-017-00900-1
Yan, 2021, Metformin intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation, PLoS One, 16, 10.1371/journal.pone.0254321
Dorlo, 2008, Development and validation of a quantitative assay for the measurement of miltefosine in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 865, 55, 10.1016/j.jchromb.2008.02.005
Witkowski, 2020, Gut microbiota and cardiovascular disease, Circ. Res., 127, 553, 10.1161/CIRCRESAHA.120.316242
Chen, 2016, Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota, mBio, 7, e02210, 10.1128/mBio.02210-15
Zangara, 2022, Maltodextrin consumption impairs the intestinal mucus barrier and accelerates colitis through direct actions on the epithelium, Front. Immunol., 13, 10.3389/fimmu.2022.841188
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303
Callahan, 2016, DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581, 10.1038/nmeth.3869
McMurdie, 2013, An R package for reproducible interactive analysis and graphics of microbiome census data, PLoS One, 8, 10.1371/journal.pone.0061217
McMurdie, 2014, Waste not, want not: why rarefying microbiome data is inadmissible, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003531
Wickham, 2009
Benjamini, 2010, Discovering the false discovery rate, J. Roy. Stat. Soc. B, 72, 405, 10.1111/j.1467-9868.2010.00746.x
Hollander, 1999, Nonparametric statistical methods, Stat. Med., 19, 1386