Sự suy giảm khả năng tự điều chỉnh lưu lượng máu đầu thần kinh thị giác trong phẫu thuật dịch kính ở bệnh nhân tăng huyết áp và tăng lipid máu

Springer Science and Business Media LLC - Tập 255 - Trang 2227-2235 - 2017
Ryuya Hashimoto1, Tetsuya Sugiyama1,2,3, Makoto Ubuka1, Takatoshi Maeno1
1Department of Ophthalmology, Toho University Sakura Medical Center, Chiba Prefecture, Japan
2Department of Ophthalmology, Osaka Medical College, Osaka, Japan
3Nakano Eye Clinic of Kyoto Medical Co-operative, Kyoto, Japan

Tóm tắt

Mục đích: Để kiểm tra xem tăng huyết áp (HTN) và tăng lipid máu (HL) có ảnh hưởng đến khả năng tự điều chỉnh lưu lượng máu tại đầu dây thần kinh thị giác (ONH) trong quá trình phẫu thuật dịch kính hay không. Thiết kế: Nghiên cứu đoàn hệ. Mười bảy mắt từ 17 bệnh nhân có HTN và HL và 19 mắt từ 19 bệnh nhân đối chứng không có rối loạn hệ thống đã trải qua phẫu thuật dịch kính để điều trị màng màng nội và lỗ hoàng điểm. Sau quá trình phẫu thuật dịch kính bằng 25-gauge qua vết mổ nhỏ tiêu chuẩn, tỷ lệ lòa trung bình (MBR), chỉ số lưu lượng máu ONH tương đối, trong vùng mạch (vascular MBR) và MBR trong vùng mô (tissue MBR) đã được đo bằng cách sử dụng phương pháp laser speckle flowgraphy. Các phép đo được thực hiện trước khi tăng huyết áp nội nhãn (IOP) khoảng 15-mmHg và sau 5 và 10 phút. Cả hai thông số đại diện cho giá trị tương đối của lưu lượng máu ONH (% so với giá trị cơ sở). Tỷ lệ phục hồi lưu lượng máu đến ONH được tính bằng công thức sau: (MBR tại 10 phút - MBR tại 5 phút)/(MBR tại giá trị cơ sở - MBR tại 5 phút). Áp suất perfusion của mắt ở tất cả các bệnh nhân đã giảm cả 5 và 10 phút sau khi tăng IOP. Vascular MBR ở các bệnh nhân có HTN và HL (75.5 ± 14.8) thấp hơn đáng kể so với nhóm đối chứng (86.7 ± 12.1) sau 10 phút tăng IOP (P = 0.019). Tỷ lệ phục hồi lưu lượng máu mạch máu thấp hơn đáng kể ở nhóm HTN và HL so với nhóm đối chứng (P = 0.002). Kết quả của chúng tôi cho thấy rằng HTN và HL gây suy giảm khả năng tự điều chỉnh trong thành phần mạch máu của lưu lượng máu ONH trong quá trình phẫu thuật dịch kính.

Từ khóa

#tăng huyết áp #tăng lipid máu #lưu lượng máu đầu dây thần kinh thị giác #phẫu thuật dịch kính #khả năng tự điều chỉnh

Tài liệu tham khảo

Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38 Grunwald JE, Sinclair SH, Riva CE (1982) Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 23:124–127 Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ (1997) Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64:737–744. https://doi.org/10.1006/exer.1996.0263 Riva CE, Hero M, Titze P, Petrig B (1997) Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–626 Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155. https://doi.org/10.1016/j.exer.2010.09.002 Heistad DD, Lopez JA, Baumbach GL (1991) Hemodynamic determinants of vascular changes in hypertension and atherosclerosis. Hypertension 17:III7–II11 Strandgaard S, Olesen J, Skinhoj E, Lassen NA (1973) Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1:507–510 Hayreh SS, Servais GE, Virdi PS (1986) Fundus lesions in malignant hypertension. V. Hypertensive optic neuropathy. Ophthalmology 93:74–87 Shibata M, Sugiyama T, Hoshiga M, Hotchi J, Okuno T, Oku H, Hanafusa T, Ikeda T (2011) Changes in optic nerve head blood flow, visual function, and retinal histology in hypercholesterolemic rabbits. Exp Eye Res 93:818–824. https://doi.org/10.1016/j.exer.2011.09.014 Bek T, Al-Mashhadi RH, Misfeldt M, Riis-Vestergaard MJ, Bentzon JF, Pedersen SM (2013) Relaxation of porcine retinal arterioles exposed to hypercholesterolemia in vivo is modified by hepatic LDL-receptor deficiency and diabetes mellitus. Exp Eye Res 115:79–86. https://doi.org/10.1016/j.exer.2013.06.013 Reimann M, Weiss N, Ziemssen T (2015) Different responses of the retinal and cutaneous microcirculation to transient dysmetabolic conditions. Atheroscler Suppl 18:1–7. https://doi.org/10.1016/j.atherosclerosissup.2015.02.001 Sharifizad M, Witkowska KJ, Aschinger GC, Sapeta S, Rauch A, Schmidl D, Werkmeister RM, Garhofer G, Schmetterer L (2016) Factors determining flicker-induced retinal vasodilation in healthy subjects. Invest Ophthalmol Vis Sci 57:3306–3312. https://doi.org/10.1167/iovs.16-19261 Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S (2010) Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 88:723–729. https://doi.org/10.1111/j.1755-3768.2009.01586.x Sugiyama T (2014) Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photo-Dermatology 1:220–234 Fujii H (1994) Visualisation of retinal blood flow by laser speckle flow-graphy. Med Biol Eng Comput 32:302–304 Takahashi H, Sugiyama T, Tokushige H, Maeno T, Nakazawa T, Ikeda T, Araie M (2013) Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp Eye Res 108:10–15. https://doi.org/10.1016/j.exer.2012.12.003 Shiga Y, Asano T, Kunikata H, Nitta F, Sato H, Nakazawa T, Shimura M (2014) Relative flow volume, a novel blood flow index in the human retina derived from laser speckle flowgraphy. Invest Ophthalmol Vis Sci 55:3899–3904. https://doi.org/10.1167/iovs.14-14116 Isono H, Kishi S, Kimura Y, Hagiwara N, Konishi N, Fujii H (2003) Observation of choroidal circulation using index of erythrocytic velocity. Arch Ophthalmol 121:225–231 Hashimoto R, Sugiyama T, Ubuka M, Maeno T (2016) Autoregulation of optic nerve head blood flow induced by elevated intraocular pressure during vitreous surgery. Curr Eye Res 42:625–628. https://doi.org/10.1080/02713683.2016.1220592 Ubuka M, Sugiyama T, Onoda Y, Shiba T, Hori Y, Maeno T (2014) Changes in the blood flow of the optic nerve head induced by different concentrations of epinephrine in intravitreal infusion during vitreous surgery. Invest Ophthalmol Vis Sci 55:1625–1629. https://doi.org/10.1167/iovs.13-13801 Hashimoto R, Sugiyama T, Masahara H, Sakamoto M, Ubuka M, Maeno T (2017) Impaired autoregulation of blood flow at the optic nerve head during vitrectomy in patients with type 2 diabetes. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2017.06.021 Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) Seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252. https://doi.org/10.1161/01.HYP.0000107251.49515.c2 Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, Daida H, Biro S, Hirobe K, Funahashi T, Yokote K, Yokode M (2007) Executive summary of Japan atherosclerosis society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb 14:45–50 Watkins R, Beigi B, Yates M, Chang B, Linardos E (2001) Intraocular pressure and pulsatile ocular blood flow after retrobulbar and peribulbar anaesthesia. Br J Ophthalmol 85:796–798 Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, Nakamura M, Fuse N, Nakazawa T (2011) Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol 5:1171–1176. https://doi.org/10.2147/opth.s22093 Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149:704–712. https://doi.org/10.1016/j.ajo.2010.01.018 Quaranta L, Katsanos A, Russo A, Riva I (2013) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol 58:26–41. https://doi.org/10.1016/j.survophthal.2012.05.003 Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92:e252–e266. https://doi.org/10.1111/aos.12298 Okuno T, Oku H, Sugiyama T, Yang Y, Ikeda T (2002) Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci 43:784–789 Nagaoka T, Sakamoto T, Mori F, Sato E, Yoshida A (2002) The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci 43:3037–3044 Schmidl D, Boltz A, Kaya S, Palkovits S, Told R, Napora KJ, Cherecheanu AP, Werkmeister RM, Garhofer G, Schmetterer L (2013) Role of nitric oxide in optic nerve head blood flow regulation during an experimental increase in intraocular pressure in healthy humans. Exp Eye Res 116:247–253. https://doi.org/10.1016/j.exer.2013.09.008 Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654. https://doi.org/10.1056/nejm199606203342507 Sugiyama T, Mashima Y, Yoshioka Y, Oku H, Ikeda T (2009) Effect of unoprostone on topographic and blood flow changes in the ischemic optic nerve head of rabbits. Arch Ophthalmol 127:454–459. https://doi.org/10.1001/archophthalmol.2008.606 Sugiyama T, Shibata M, Kajiura S, Okuno T, Tonari M, Oku H, Ikeda T (2011) Effects of fasudil, a rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci 52:64–69. https://doi.org/10.1167/iovs.10-5265 Deschenes MC, Descovich D, Moreau M, Granger L, Kuchel GA, Mikkola TS, Fick GH, Chemtob S, Vaucher E, Lesk MR (2010) Postmenopausal hormone therapy increases retinal blood flow and protects the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 51:2587–2600. https://doi.org/10.1167/iovs.09-3710 Zawinka C, Resch H, Schmetterer L, Dorner GT, Garhofer G (2004) Intravenously administered histamine increases choroidal but not retinal blood flow. Invest Ophthalmol Vis Sci 45:2337–2341 Polska E, Ehrlich P, Luksch A, Fuchsjager-Mayrl G, Schmetterer L (2003) Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 44:3110–3114 Tani T, Nagaoka T, Nakabayashi S, Yoshioka T, Yoshida A (2014) Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: comparison of the effects of increased intraocular pressure and systemic hypotension. Invest Ophthalmol Vis Sci 55:360–367. https://doi.org/10.1167/iovs.13-12591 Sugiyama T, Oku H, Ikari S, Ikeda T (2000) Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits. Invest Ophthalmol Vis Sci 41:1149–1152 Ueeda M, Silvia SK, Olsson RA (1992) Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70:1296–1303 Koller A, Huang A, Sun D, Kaley G (1995) Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res 76:544–550 Nickenig G (2004) Should angiotensin II receptor blockers and statins be combined? Circulation 110:1013–1020. https://doi.org/10.1161/01.cir.0000139857.85424.45 Catt KJ, Cain MD, Zimmet PZ, Cran E (1969) Blood angiotensin II levels of normal and hypertensive subjects. Br Med J 1:819–821 Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, Bohm M (1997) Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys 272:H2701–H2707 Jayakody L, Senaratne M, Thomson A, Kappagoda T (1987) Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res 60:251–264 Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27. https://doi.org/10.1056/nejm199007053230105 Konishi M, Su C (1983) Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5:881–886 Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439 Ferrari-Dileo G, Davis EB, Anderson DR (1991) Angiotensin II binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach. Invest Ophthalmol Vis Sci 32:21–26 Regrigny O, Atkinson J, Capdeville-Atkinson C, Liminana P, Chillon JM (2000) Effect of lovastatin on cerebral circulation in spontaneously hypertensive rats. Hypertension 35:1105–1110 Carod-Artal FJ (2006) Statins and cerebral vasomotor reactivity: implications for a new therapy? Stroke 37:2446–2448. https://doi.org/10.1161/01.STR.0000239656.59618.d4 Nagaoka T, Takahashi A, Sato E, Izumi N, Hein TW, Kuo L, Yoshida A (2006) Effect of systemic administration of simvastatin on retinal circulation. Arch Ophthalmol 124:665–670. https://doi.org/10.1001/archopht.124.5.665 Nagaoka T, Hein TW, Yoshida A, Kuo L (2007) Simvastatin elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and mevalonate-rho kinase pathways. Invest Ophthalmol Vis Sci 48:825–832. https://doi.org/10.1167/iovs.06-0856