Impaired deformability of circulating erythrocytes obtained from nondiabetic hypertensive patients: investigation by a nickel mesh filtration technique

Clinical Hypertension - Tập 21 Số 1 - 2015
Keita Odashiro1, Kazuyuki Saito2, Tomohiro Arita1, Toru Maruyama3, Takehiko Fujino4, Koichi Akashi1
1Department of Medicine, Kyushu University, Fukuoka, Japan
2BOOCS Clinic, Fukuoka, Japan
3Faculty of Art and Science, Kyushu University, Kasuga, Japan
4Institute of Rheological Function of Foods Co. Ltd, Hisayama, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zullig LL, Melnyk SD, Goldstein K, Shaw RJ, Bosworth HB. The role of home blood pressure telemonitoring in managing hypertensive populations (Review). Curr Hypertens Rep. 2013;15:346–55.

Kaczmarska M, Fornal M, Messerli FH, Korecki J, Grodzicki T, Burda K. Erythrocyte membrane properties in patients with essential hypertension. Cell Biochem Biophys. 2013;67:1089–102.

Amaiden MR, Monesterolo NE, Santander VS, Campetelli AN, Arce CA, Pie J, et al. Involvement of membrane tubulin in erythrocyte deformability and blood pressure. J Hypertens. 2012;30:1414–22.

Pytel E, Duchnowicz P, Jackowska P, Wojdan K, Koter-Michalak M, Broncel M. Disorders of erythrocyte structure and function in hypertensive patients. Med Sci Monit. 2012;18:BR331–6.

Rodgers GP, Dover GJ, Uyesaka N, Noguchi CT, Schechter AN, Nienhuis AW. Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease. N Engl J Med. 1993;328:73–80.

Hiruma H, Noguchi CT, Uyesaka N, Schechter AN, Rodgers GP. Contributions of sickle hemoglobin polymer and sickle cell membranes to impaired filterability. Am J Physiol. 1995;268:H2003–8.

Oonishi T, Sakashita K, Uyesaka N. Regulation of red blood cell filterability by Ca2+ influx and cAMP-mediated signaling pathways. Am J Physiol. 1997;273:C1828–34.

Saito K, Kogawa Y, Fukata M, Odashiro K, Maruyama T, Akashi K, et al. Impaired deformability of erythrocytes in diabetic rat and human: investigation by the nickel-mesh-filtration technique. J Biorheol. 2011;25:18–26.

Ejima J, Ijichi T, Ohnishi Y, Maruyama T, Kaji Y, Kanaya S, et al. Relationship of high-density lipoprotein cholesterol and red blood cell filterability: cross-sectional study of healthy subjects. Clin Hemorheol Microcirc. 2000;22:1–7.

Arai K, Iino M, Shio H, Uyesaka N. Further investigations of red cell deformability with nickel mesh. Biorheology. 1990;27:47–65.

Nakamura T, Hasegawa S, Shio H, Uyesaka N. Rheologic and pathophysiologic significance of red cell passage through narrow pores. Blood Cells. 1994;20:151–65.

Saito K, Odashiro K, Maruyama T, Akashi K, Mawatari S, Fujino T. Improvement of diabetic or obese patients’ erythrocyte deformability by the program of the brain-oriented obesity control system (BOOCS). J Physiol Sci. 2012;62:445–51.

Okamoto K, Maruyama T, Kaji Y, Harada M, Mawatari S, Fujino T, et al. Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress. Jpn J Physiol. 2004;54:39–46.

Mohandas N, Chasis JA. Red cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993;30:171–92.

Dikalov SI, Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol. 2013;305:H1417–27.

Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications (Review). Trends Cardiovasc Med. 2014;24:165–9.

Uyesaka N, Hasegawa S, Ishioka N, Ishioka R, Shio H, Schechter AN. Effects of superoxide anions on red cell deformability and membrane proteins. Biorheology. 1992;29:217–29.

Iwata H, Ukeda H, Maruyama T, Fujino T, Sawamura M. Effect of carbonyl compounds on red blood cells deformability. Biochem Biophys Res Comm. 2004;321:700–6.

Luneva OG, Brazhe NA, Maksimova NV, Rodnenkov OV, Parshina EY, Bryzgalova NY. Ion transport, membrane fluidity and haemoglobin conformation in erythrocyte from patients with cardiovascular diseases: role of augmented plasma cholesterol. Pathophysiology. 2007;14:41–6.

Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34:665–73.

Ariyoshi K, Maruyama T, Odashiro K, Akashi K, Fujino T, Uyesaka N. Impaired erythrocyte filterability of spontaneously hypertensive rats: investigation by nickel mesh filtration technique. Circ J. 2010;74:129–36.

Fornal M, Korbut RA, Królczyk J, Grodzicki T. Left ventricular geometry and rheological properties of erythrocytes in patients at cardiovascular disease risk. Clin Hemorheol Microcirc. 2009;43:203–8.

Ogihara T, Saruta T, Rakugi H, Fujimoto A, Ueshima K, Yasuno S, et al. Relationship between the achieved blood pressure and the incidence of cardiovascular events in Japanese hypertensive patients with complications: a sub-analysis of the CASE-J trial. Hypertens Res. 2009;32:248–54.

Nakashima T, Umemoto S, Yoshimura K, Matsuda S, Itoh S, Murata T, Fukai T, Matsuzaki M. TLR4 is a critical regulator of angiotensin II-induced vascular remodeling: the roles of extracellular SOD and NADPH oxidase. Hypertens Res 2015; doi: 10.1038/hr.2015.55. [Epub ahead of print]

Marketou ME, Kontaraki JE, Zacharis EA, Kochiadakis GE, Giaouzaki A, Chlouverakis G, et al. TLR2 and TLR4 gene expression in peripheral monocytes in nondiabetic hypertensive patients: the effect of intensive blood pressure-lowering. J Clin Hypertens. 2012;14:330–5.