Impacts of climate change on the distributions and diversity of the giant panda with its sympatric mammalian species

Ecological Indicators - Tập 144 - Trang 109452 - 2022
Jingjing Zhang1, Shan Pan1, Qibing Che1, Wei Wei1, Xuzhe Zhao1, Junfeng Tang1
1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Ecology, China West Normal University, Nanchong, China

Tài liệu tham khảo

Bellard, 2012, Impacts of climate change on the future of biodiversity, Ecol. Lett., 15, 365, 10.1111/j.1461-0248.2011.01736.x Bellard, 2014, Vulnerability of biodiversity hotspots to global change, Glob. Ecol. Biogeogr., 23, 1376, 10.1111/geb.12228 Biber, 2020, A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness, J. Biogeogr., 47, 114, 10.1111/jbi.13696 Boyce, 2002, Evaluating resource selection functions, Ecol. Model., 157, 281, 10.1016/S0304-3800(02)00200-4 Cadotte, 2011, Beyond species: functional diver- sity and the maintenance of ecological processes and services, J. Appl. Ecol., 48, 1079, 10.1111/j.1365-2664.2011.02048.x Cardinale, 2012, Biodiversity loss and its impact on humanity, Nature, 486, 59, 10.1038/nature11148 Chen, 2011, Rapid Range Shifts of Species Associated with High Levels of Climate Warming, Science, 333, 1024, 10.1126/science.1206432 Ferrier, 2006, Spatial modelling of biodiversity at the community level, J. Appl. Ecol., 43, 393, 10.1111/j.1365-2664.2006.01149.x Fick, 2017, WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086 Guisan, 2005, Predicting species distribution: offering more than simple habitat models, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x Hickling, 2006, The distributions of a wide range of taxonomic groups are expanding polewards, Glob. Change Biol., 12, 450, 10.1111/j.1365-2486.2006.01116.x Hooper, 2012, A global synthesis reveals biodiversity loss as a major driver of ecosystem change, Nature, 486, 105, 10.1038/nature11118 Isbell, 2015, Biodiversity increases the resistance of ecosystem productivity to climate extremes, Nature, 526, 574, 10.1038/nature15374 Lawson, 2014, Prevalence, thresholds and the performance of presence–absence models, Methods Ecol. Evol., 5, 54, 10.1111/2041-210X.12123 Levinsky, 2007, Potential impacts of climate change on the distributions and diversity patterns of European mammals, Biodivers. Conserv., 16, 3803, 10.1007/s10531-007-9181-7 Li, 2020, Projecting species loss and turnover under climate change for 111 Chinese tree species, For. Ecol. Manage., 477, 10.1016/j.foreco.2020.118488 Li, 2020, Retreat of large carnivores across the giant panda distribution range, Nat. Ecol. Evol., 4, 1327, 10.1038/s41559-020-1260-0 Liu, 2020, Camera-trapping survey of wild mammals and birds in Daxiangling Nature Reserve, Sichuan Province, Biodiversity Science, 28, 905, 10.17520/biods.2019381 Lurgi, 2012, Novel communities from climate change, Philosoph. Trans. Roy. Soc. B: Biol. Sci., 367, 2913, 10.1098/rstb.2012.0238 Meier, 2012, Climate, competition and connectivity affect future migration and ranges of European trees, Glob. Ecol. Biogeogr., 21, 164, 10.1111/j.1466-8238.2011.00669.x Muscarella, 2014, ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models, Methods Ecol. Evol., 5, 1198, 10.1111/2041-210X.12261 Newbold, 2015, Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios, Proceed. Roy. Soc. B: Biol. Sci., 285, 20180792, 10.1098/rspb.2018.0792 Ohlemüller, 2008, The coincidence of climatic and species rarity: high risk to small-range species from climate change, Biol. Lett., 4, 568, 10.1098/rsbl.2008.0097 Papeş, 2007, Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents, Divers. Distrib., 13, 890, 10.1111/j.1472-4642.2007.00392.x Parmesan, 2003, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 37, 10.1038/nature01286 Pearson, 2007, Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 34, 102, 10.1111/j.1365-2699.2006.01594.x Peterson, 2011 Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026 Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026 Roberge, 2004, Usefulness of the Umbrella Species Concept as a Conservation Tool, Conserv. Biol., 18, 76, 10.1111/j.1523-1739.2004.00450.x Rogelj, 2018, Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature, Clim. Change, 8, 325 Root, 2003, Fingerprints of global warming on wild animals and plants, Nature, 421, 57, 10.1038/nature01333 State Forestry Administration, 2021 Swaisgood, R.R., Wang, D., & Wei, F. (2016). Ailuropoda melanoleuca. In IUCN Red List of Threatened Species. See http://www.iucnredlist.org/details/712/0. Thuiller, 2005, Climate change threats to plant diversity in Europe, Proc. Natl. Acad. Sci., 102, 8245, 10.1073/pnas.0409902102 Thuiller, 2011, Consequences of climate change on the tree of life in Europe, Nature, 470, 531, 10.1038/nature09705 Trew, 2021, Vulnerability of global biodiversity hotspots to climate change, Glob. Ecol. Biogeogr., 30, 768, 10.1111/geb.13272 Urban, 2016, Improving the forecast for biodiversity under climate change, Science, 353, 10.1126/science.aad8466 Walther, 2002, Ecological responses to recent climate change, Nature, 416, 389, 10.1038/416389a Wang, 2021, The hidden risk of using umbrella species as conservation surrogates: A spatio-temporal approach, Biol. Conserv., 253, 108913, 10.1016/j.biocon.2020.108913 Wen, 2022, Environmental drivers of sympatric mammalian species compositional turnover in giant panda nature reserves: Implications for conservation, Sci. Total Environ., 806, 150944, 10.1016/j.scitotenv.2021.150944 Williams, 2007, Novel climates, no-analog communities, and ecological surprises, Front. Ecol. Environ., 5, 475, 10.1890/070037 Williams John, 2007, Projected distributions of novel and disappearing climates by 2100 AD, Proc. Natl. Acad. Sci., 104, 5738, 10.1073/pnas.0606292104 Wisz, 2008, Effects of sample size on the performance of species distribution models. Divers, Distrib, 14, 763 Wisz, 2013, The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling, Biol. Rev., 88, 15, 10.1111/j.1469-185X.2012.00235.x Xu, 2017, Reassessing the conservation status of the giant panda using remote sensing, Nat. Ecol. Evol., 1, 1635, 10.1038/s41559-017-0317-1 Yalcin, 2018, An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction, Glob. Change Biol., 24, 3849, 10.1111/gcb.14169 Yuan, 2018, Ecophysiological variation across a forest-ecotone gradient produces divergent climate change vulnerability within species, Ecography, 41, 1627, 10.1111/ecog.03427 Zurell, 2020, Testing species assemblage predictions from stacked and joint species distribution models, J. Biogeogr., 47, 101, 10.1111/jbi.13608 Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla-Buitrago, G.E., Boria, R.A., Soley-Guardia, M., Anderson, R.P., 2021. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 12 (9), 1602– 1608. doi: 10.1111/2041-210X.13628. Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199 (2), 142– 152.DOI: 10.1016/j.ecolmodel.2006.05.017.