Impacts of climate change on global meteorological multi-year droughts using the last millennium simulation as a baseline
Tài liệu tham khảo
Ahmadalipour, 2019, Future drought risk in Africa: Integrating vulnerability, climate change, and population growth, Sci. Total Environ., 662, 672, 10.1016/j.scitotenv.2019.01.278
Andreadis, 2005, Twentieth-century drought in the conterminous United States, J. Hydrometeorol., 6, 985, 10.1175/JHM450.1
Atwood, 2016, Quantifying climate forcings and feedbacks over the last millennium in the CMIP5–PMIP3 models, J. Clim., 29, 1161, 10.1175/JCLI-D-15-0063.1
Ault, 2016, Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest, Sci. Adv., 2, e1600873, 10.1126/sciadv.1600873
Bao, 2013, The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2., Advances in Atmospheric Sciences, 30, 561, 10.1007/s00376-012-2113-9
Boisier, 2016, Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, 413, 10.1002/2015GL067265
Bonfils, 2020, Human influence on joint changes in temperature, rainfall and continental aridity, Nat. Clim. Change, 10, 726-+, 10.1038/s41558-020-0821-1
Bothe, 2013, Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble, Clim. Past, 9, 2471, 10.5194/cp-9-2471-2013
Brewer, 2006, Historical droughts in Mediterranean regions during the last 500 years: a data/model approach, Clim. Past Discussions, 2, 771
Buckley, 2014, Monsoon extremes and society over the past millennium on mainland Southeast Asia, Quat. Sci. Rev., 95, 1, 10.1016/j.quascirev.2014.04.022
Cammalleri, 2020, Diverging hydrological drought traits over Europe with global warming, Hydrol. Earth Syst. Sci., 24, 5919, 10.5194/hess-24-5919-2020
Chelton, 2020, A Hybrid Precipitation Index Inspired by the SPI, PDSI, and MCDI. Part I: Development of the Index, J. Hydrometeorol., 21, 1945, 10.1175/JHM-D-19-0230.1
Coats, 2020, Paleoclimate Constraints on the Spatiotemporal Character of Past and Future Droughts, J. Clim., 33, 9883, 10.1175/JCLI-D-20-0004.1
Cook, B., Mankin, J., Marvel, K., Williams, A., Smerdon, J., Anchukaitis, K. Twenty‐first century drought projections in the CMIP6 forcing scenarios, Earth's Future, 8, e2019EF001461, 10.1029/2019EF001461, 2020.
Cook, 2015, Unprecedented 21st century drought risk in the American Southwest and Central Plains, Sci. Adv., 1, e1400082, 10.1126/sciadv.1400082
Cook, 2016, North American megadroughts in the Common Era: reconstructions and simulations, Wiley Interdiscip. Rev.-Clim. Change, 7, 411, 10.1002/wcc.394
Cook, 1999, Drought reconstructions for the continental United States, J. Clim., 12, 1145, 10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2
Cook, 2004, Long-term aridity changes in the western United States, Science, 306, 1015, 10.1126/science.1102586
Cook, 2010, Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context, J. Quat. Sci., 25, 48, 10.1002/jqs.1303
Dai, 2013, Increasing drought under global warming in observations and models, Nat. Clim. Change, 3, 52, 10.1038/nclimate1633
Dai, 2011, Drought under global warming: a review, Wiley Interdisciplinary Reviews-Climate, Change, 2, 45
De Michele, 2013, Multivariate assessment of droughts: Frequency analysis and dynamic return period, Water Resour. Res., 49, 6985, 10.1002/wrcr.20551
Dufresne, 2013, Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5., Climate dynamics, 40, 2123, 10.1007/s00382-012-1636-1
Fu, 2012, Drought detection of the last century: An MRF-based approach, 24
Garreaud, 2019, The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, Int. J. Climatol., 40, 421, 10.1002/joc.6219
Gent, 2011, The Community Climate System Model Version 4, J. Clim., 24, 4973, 10.1175/2011JCLI4083.1
Godfree, 2019, Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought, Proc. Natl. Acad. Sci. U. S. A., 116, 15580, 10.1073/pnas.1902046116
Gosling, 2016, A global assessment of the impact of climate change on water scarcity, Clim. Change, 134, 371, 10.1007/s10584-013-0853-x
Gu, 2018, Synthetic Impacts of Internal Climate Variability and Anthropogenic Change on Future Meteorological Droughts over China, Water, 10, 10.3390/w10111702
Gu, 2019, The contribution of internal climate variability to climate change impacts on droughts, Sci. Total Environ., 684, 229, 10.1016/j.scitotenv.2019.05.345
Gu, 2020, Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates, Hydrol. Earth Syst. Sci., 24, 451, 10.5194/hess-24-451-2020
Gu, 2020, Drought hazard transferability from meteorological to hydrological propagation, J. Hydrol., 585, 124761, 10.1016/j.jhydrol.2020.124761
Heim, 2002, A review of twentieth-century drought indices used in the United States, Bull. Am. Meteorol. Soc., 83, 1149, 10.1175/1520-0477-83.8.1149
Herrera-Estrada, 2017, Spatiotemporal dynamics of global drought, Geophys. Res. Lett., 44, 2254, 10.1002/2016GL071768
Herweijer, 2007, North American droughts of the last millennium from a gridded network of tree-ring data, J. Clim., 20, 1353, 10.1175/JCLI4042.1
Ionita, 2021, Past megadroughts in central Europe were longer, more severe and less warm than modern droughts, Commun. Earth Environ., 2, 1, 10.1038/s43247-021-00130-w
Jungclaus, 2017, The PMIP4 contribution to CMIP6–Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005, 10.5194/gmd-10-4005-2017
Kim, 2009, Future pattern of Asian drought under global warming scenario, Theor. Appl. Climatol., 98, 137, 10.1007/s00704-008-0100-y
Landrum, 2013, Last Millennium Climate and Its Variability in CCSM4, J. Clim., 26, 1085, 10.1175/JCLI-D-11-00326.1
Leng, 2015, Climate change impacts on meteorological, agricultural and hydrological droughts in China, Global Planet. Change, 126, 23, 10.1016/j.gloplacha.2015.01.003
Lloyd-Hughes, 2012, A spatio-temporal structure-based approach to drought characterisation, Int. J. Climatol., 32, 406, 10.1002/joc.2280
Loukas, 2008, Climate change effects on drought severity, Adv. Geosci., 17, 23, 10.5194/adgeo-17-23-2008
Madadgar, 2013, Drought Analysis under Climate Change Using Copula, J. Hydrol. Eng., 18, 746, 10.1061/(ASCE)HE.1943-5584.0000532
Mankin, 2019, Mid-latitude freshwater availability reduced by projected vegetation responses to climate change, Nat. Geosci., 12, 983-+, 10.1038/s41561-019-0480-x
Marvel, 2019, Twentieth-century hydroclimate changes consistent with human influence, Nature, 569, 59, 10.1038/s41586-019-1149-8
McGowan, 2012, Evidence of ENSO mega-drought triggered collapse of prehistory Aboriginal society in northwest Australia, Geophys. Res. Lett., 39, n/a-n/a, 10.1029/2012GL053916
McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, 179-183 pp.
Montaseri, 2017, Comprehensive stochastic assessment of meteorological drought indices, Int. J. Climatol., 37, 998, 10.1002/joc.4755
Montaseri, 2018, New approach in bivariate drought duration and severity analysis, J. Hydrol., 559, 166, 10.1016/j.jhydrol.2018.02.018
Oguntunde, 2017, Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa, Global Planetary Change, 155, 121, 10.1016/j.gloplacha.2017.07.003
Peng, 2014, Modeling of severe persistent droughts over eastern China during the last millennium, Clim. Past, 10, 1079, 10.5194/cp-10-1079-2014
Brohan, 2012, Interpretation of CMIP5 model ensemble, Interactive comment on “Constraining the temperature history of the past millennium using early instrumental observations” by P. Brohan, Clim. Past Discuss, 8, 1551, 10.5194/cp-8-1551-2012
Schmidt, 2011, Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33, 10.5194/gmd-4-33-2011
Schmidt, 2012, Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model. Dev., 5, 185, 10.5194/gmd-5-185-2012
Seneviratne S, N. N., Easterling D, Goodess C, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M: Changes in climate extremes and their impacts on the natural physical environment, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), 109-230, 10.7916/d8-6nbt-s431, 2012.
Sheffield, 2012, Little change in global drought over the past 60 years, Nature, 491, 435, 10.1038/nature11575
Shen, 2018, Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology, J. Hydrol., 556, 10, 10.1016/j.jhydrol.2017.11.004
Sinha, 2011, A global context for megadroughts in monsoon Asia during the past millennium, Quat. Sci. Rev., 30, 47, 10.1016/j.quascirev.2010.10.005
Spinoni, 2015, The biggest drought events in Europe from 1950 to 2012, J. Hydrol.-Reg. Stud., 3, 509
Steiger, 2019, Oceanic and radiative forcing of medieval megadroughts in the American Southwest, Sci. Adv., 5, eaax0087, 10.1126/sciadv.aax0087
Steinschneider, 2016, Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S, Water Resour. Res., 52, 3866, 10.1002/2016WR018712
Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley: Summary for Policymakers, in: IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2014.
Su, B. D., Huang, J. L., Fischer, T., Wang, Y. J., Kundzewicz, Z. W., Zhai, J. Q., Sun, H. M., Wang, A. Q., Zeng, X. F., Wang, G. J., Tao, H., Gemmer, M., Li, X. C., and Jiang, T.: Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming, Proceedings of the National Academy of Sciences of the United States of America, 115, 10600-10605, 10.1073/pnas.1802129115, 2018.
Sueyoshi, T., Ohgaito, R., Yamamoto, A., Chikamoto, M. O., Hajima, T., Okajima, H., Yoshimori, M., Abe, M., O'ishi, R., Saito, F., Watanabe, S., Kawamiya, M., and Abe-Ouchi, A.: Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM, Geosci Model Dev, 6, 2013, 819-836, 10.5194/gmd-6-819-2013.
Svoboda, M., Hayes, M., Wood, D.A., 2012. Standardized Precipitation Index User Guide, World Meteorological Organization Geneva, Switzerland.
Taylor, 2012, An Overview of Cmip5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485, 10.1175/BAMS-D-11-00094.1
Thomson, 2011, RCP4.5: a pathway for stabilization of radiative forcing by 2100, Clim. Change, 109, 77, 10.1007/s10584-011-0151-4
Vance, 2013, A Millennial Proxy Record of ENSO and Eastern Australian Rainfall from the Law Dome Ice Core, East Antarctica, J. Clim., 26, 710, 10.1175/JCLI-D-12-00003.1
Vance, 2015, Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium, Geophys. Res. Lett., 42, 129, 10.1002/2014GL062447
Vicente-Serrano, 2010, A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Clim., 23, 1696, 10.1175/2009JCLI2909.1
Wang, 2011, Soil Moisture Drought in China, 1950–2006, J. Clim., 24, 3257, 10.1175/2011JCLI3733.1
Wang, 2013, Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario, Clim. Dyn., 42, 83, 10.1007/s00382-013-1769-x
Wang, 2018, Transferability of climate simulation uncertainty to hydrological impacts, Hydrol. Earth Syst. Sci., 22, 3739, 10.5194/hess-22-3739-2018
Williams, 2020, Large contribution from anthropogenic warming to an emerging North American megadrought, Science, 368, 314, 10.1126/science.aaz9600
Xiao-Ge, 2015, How Well does BCC_CSM1.1 Reproduce the 20th Century Climate Change over China?, Atmos. Oceanic Sci. Lett., 6, 21, 10.1080/16742834.2013.11447053
Xu, 2015, Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective, J. Hydrol., 526, 253, 10.1016/j.jhydrol.2014.09.047
Xu, 2015, Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China, J. Hydrol., 527, 630, 10.1016/j.jhydrol.2015.05.030
Yao, 2018, Drought evolution, severity and trends in mainland China over 1961–2013, Sci. Total Environ., 616–617, 73, 10.1016/j.scitotenv.2017.10.327
Yevjevich, 1967
Yukimoto, 2012, A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance, J. Meteorol. Soc. Japan Ser. II, 90A, 23, 10.2151/jmsj.2012-A02
Zhai, 2016, Intensity–area–duration analysis of droughts in China 1960–2013, Clim. Dyn., 48, 151, 10.1007/s00382-016-3066-y
Zhu, 2019, Three dimensional characterization of meteorological and hydrological droughts and their probabilistic links, J. Hydrol., 578, 10.1016/j.jhydrol.2019.124016