Impacts of cellulose nanofibril and physical aging on the enthalpy relaxation behavior and dynamic mechanical thermal properties of Poly(lactic acid) composite films

Polymer - Tập 202 - Trang 122677 - 2020
Ji-Su Lee1, Gyu Hyun Hwang1, Young Seung Kwon1, Young Gyu Jeong1
1Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

Tài liệu tham khảo

Saheb, 1999, Natural fiber polymer composites: a review, Adv. Polym. Technol., 18, 351, 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X Yang, 2020, Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation, J. Membr. Sci., 597, 117763, 10.1016/j.memsci.2019.117753 Zhang, 2000, Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation, J. Mater. Chem. A, 8, 5078, 10.1039/C9TA12670H Suryanegara, 2009, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol., 69, 1187, 10.1016/j.compscitech.2009.02.022 Tan, 2016, Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide, ACS Sustain. Chem. Eng., 4, 5370, 10.1021/acssuschemeng.6b01713 Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E Gupta, 2017, Rheological and thermo-mechanical properties of poly (lactic acid)/lignin-coated cellulose nanocrystal composites, ACS Sustain. Chem. Eng., 5, 1711, 10.1021/acssuschemeng.6b02458 Sousa, 2019, Poly(lactic acid) composites reinforced with kraft pulp fibres: production by a papermaking process and characterisation, Compos. Appl. Sci. Manuf., 121, 273, 10.1016/j.compositesa.2019.03.024 Jin, 2019, Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review, Compos. B Eng., 164, 287, 10.1016/j.compositesb.2018.10.078 Li, 2007, Effect of nucleation and plasticizaqtion on the crystallization of poly(lactic acid), Polymer, 48, 6855, 10.1016/j.polymer.2007.09.020 Hutchinson, 1995, Physical aging of polymers, Prog. Polym. Sci., 20, 703, 10.1016/0079-6700(94)00001-I Cui, 2020, Physical ageing of Poly(Lactic acid): factors and consequences for practice, Polymer, 186, 122014, 10.1016/j.polymer.2019.122014 Pan, 2008, Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging, J. Chem. Phys., 129, 184902, 10.1063/1.3010368 Kwon, 2010, Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents, Macromol. Res., 18, 346, 10.1007/s13233-010-0410-7 Lee, 2010, Strain-induced enthalpy relaxation in poly(lactic acid), Macromolecules, 43, 25, 10.1021/ma901880a Hodge, 1983, Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 4. Comparison of five polymers, Macromolecules, 16, 898, 10.1021/ma00240a013 Hutchinson, 1999, Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior, Macromolecules, 32, 5046, 10.1021/ma981391t Soloukhin, 2003, Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data, Macromolecules, 36, 7585, 10.1021/ma0342980 Ho, 2004, Physical aging and time–temperature behavior concerning fracture performance of polycarbonate, Theor. Appl. Fract. Mech., 41, 103, 10.1016/j.tafmec.2003.11.008 Xu, 2016, Zero-dimensional and highly oxygenated graphene oxide for multifunctional poly(lactic acid) bionanocomposites, ACS Sustain. Chem. Eng., 4, 5618, 10.1021/acssuschemeng.6b01524 Wu, 2019, Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes, Compos. Appl. Sci. Manuf., 127, 105650, 10.1016/j.compositesa.2019.105650 Mondal, 2017, Preparation, properties and applications of nanocellulosic materials, Carbohydr. Polym., 163, 301, 10.1016/j.carbpol.2016.12.050 Rajinipriya, 2018, Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review, ACS Sustain. Chem. Eng., 6, 2807, 10.1021/acssuschemeng.7b03437 Iwatake, 2008, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103, 10.1016/j.compscitech.2008.03.006 Wang, 2012, Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079, 10.1021/am301438g Pracella, 2014, Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc, Polymer, 55, 3720, 10.1016/j.polymer.2014.06.071 Soman, 2017, Semi-interpenetrating network composites of poly(lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from Areca catechu husk, Compos. Sci. Technol., 141, 65, 10.1016/j.compscitech.2017.01.007 Karkhanis, 2018, Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films, Compos. Appl. Sci. Manuf., 114, 204, 10.1016/j.compositesa.2018.08.025 Wei, 2018, Performance of high lignin content cellulose nanocrystals in poly(lactic acid), Polymer, 135, 305, 10.1016/j.polymer.2017.12.039 Clarkson, 2020, Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer, Polymer, 187, 122101, 10.1016/j.polymer.2019.122101 Tserki, 2005, A study of the effect of the acetylation and propionilation surface treatment on natural fibers, Compos. Appl. Sci. Manuf., 36, 1110, 10.1016/j.compositesa.2005.01.004 Sanchez-Garcia, 2010, On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid, Cellulose, 17, 987, 10.1007/s10570-010-9430-x Cowie, 1986, The aging of poly(vinyl methyl-ester) as determined from enthalpy relaxation measurements, Polym. Commun., 27, 258 Bailey, 2001, A study of enthalpic relaxation of poly(ethylene terephthalate) by conventional and modulated temperature DSC, Thermochim. Acta, 367–368, 425, 10.1016/S0040-6031(00)00685-7