Impacts of cellulose nanofibril and physical aging on the enthalpy relaxation behavior and dynamic mechanical thermal properties of Poly(lactic acid) composite films
Tài liệu tham khảo
Saheb, 1999, Natural fiber polymer composites: a review, Adv. Polym. Technol., 18, 351, 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
Yang, 2020, Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation, J. Membr. Sci., 597, 117763, 10.1016/j.memsci.2019.117753
Zhang, 2000, Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation, J. Mater. Chem. A, 8, 5078, 10.1039/C9TA12670H
Suryanegara, 2009, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol., 69, 1187, 10.1016/j.compscitech.2009.02.022
Tan, 2016, Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide, ACS Sustain. Chem. Eng., 4, 5370, 10.1021/acssuschemeng.6b01713
Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
Gupta, 2017, Rheological and thermo-mechanical properties of poly (lactic acid)/lignin-coated cellulose nanocrystal composites, ACS Sustain. Chem. Eng., 5, 1711, 10.1021/acssuschemeng.6b02458
Sousa, 2019, Poly(lactic acid) composites reinforced with kraft pulp fibres: production by a papermaking process and characterisation, Compos. Appl. Sci. Manuf., 121, 273, 10.1016/j.compositesa.2019.03.024
Jin, 2019, Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review, Compos. B Eng., 164, 287, 10.1016/j.compositesb.2018.10.078
Li, 2007, Effect of nucleation and plasticizaqtion on the crystallization of poly(lactic acid), Polymer, 48, 6855, 10.1016/j.polymer.2007.09.020
Hutchinson, 1995, Physical aging of polymers, Prog. Polym. Sci., 20, 703, 10.1016/0079-6700(94)00001-I
Cui, 2020, Physical ageing of Poly(Lactic acid): factors and consequences for practice, Polymer, 186, 122014, 10.1016/j.polymer.2019.122014
Pan, 2008, Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging, J. Chem. Phys., 129, 184902, 10.1063/1.3010368
Kwon, 2010, Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents, Macromol. Res., 18, 346, 10.1007/s13233-010-0410-7
Lee, 2010, Strain-induced enthalpy relaxation in poly(lactic acid), Macromolecules, 43, 25, 10.1021/ma901880a
Hodge, 1983, Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 4. Comparison of five polymers, Macromolecules, 16, 898, 10.1021/ma00240a013
Hutchinson, 1999, Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior, Macromolecules, 32, 5046, 10.1021/ma981391t
Soloukhin, 2003, Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data, Macromolecules, 36, 7585, 10.1021/ma0342980
Ho, 2004, Physical aging and time–temperature behavior concerning fracture performance of polycarbonate, Theor. Appl. Fract. Mech., 41, 103, 10.1016/j.tafmec.2003.11.008
Xu, 2016, Zero-dimensional and highly oxygenated graphene oxide for multifunctional poly(lactic acid) bionanocomposites, ACS Sustain. Chem. Eng., 4, 5618, 10.1021/acssuschemeng.6b01524
Wu, 2019, Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes, Compos. Appl. Sci. Manuf., 127, 105650, 10.1016/j.compositesa.2019.105650
Mondal, 2017, Preparation, properties and applications of nanocellulosic materials, Carbohydr. Polym., 163, 301, 10.1016/j.carbpol.2016.12.050
Rajinipriya, 2018, Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review, ACS Sustain. Chem. Eng., 6, 2807, 10.1021/acssuschemeng.7b03437
Iwatake, 2008, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103, 10.1016/j.compscitech.2008.03.006
Wang, 2012, Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079, 10.1021/am301438g
Pracella, 2014, Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc, Polymer, 55, 3720, 10.1016/j.polymer.2014.06.071
Soman, 2017, Semi-interpenetrating network composites of poly(lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from Areca catechu husk, Compos. Sci. Technol., 141, 65, 10.1016/j.compscitech.2017.01.007
Karkhanis, 2018, Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films, Compos. Appl. Sci. Manuf., 114, 204, 10.1016/j.compositesa.2018.08.025
Wei, 2018, Performance of high lignin content cellulose nanocrystals in poly(lactic acid), Polymer, 135, 305, 10.1016/j.polymer.2017.12.039
Clarkson, 2020, Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer, Polymer, 187, 122101, 10.1016/j.polymer.2019.122101
Tserki, 2005, A study of the effect of the acetylation and propionilation surface treatment on natural fibers, Compos. Appl. Sci. Manuf., 36, 1110, 10.1016/j.compositesa.2005.01.004
Sanchez-Garcia, 2010, On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid, Cellulose, 17, 987, 10.1007/s10570-010-9430-x
Cowie, 1986, The aging of poly(vinyl methyl-ester) as determined from enthalpy relaxation measurements, Polym. Commun., 27, 258
Bailey, 2001, A study of enthalpic relaxation of poly(ethylene terephthalate) by conventional and modulated temperature DSC, Thermochim. Acta, 367–368, 425, 10.1016/S0040-6031(00)00685-7