Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L.

Springer Science and Business Media LLC - Tập 21 Số 2 - Trang 122-128 - 2016
Fatemeh Rahmani1, Arghavan Peymani1, Elhameh Daneshvand1, Poorya Biparva2
1Department of Biology and Institute of Biotechnology, Faculty of Sciences, Urmia University, Urmia, Iran
2Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashraf, M., & McNeilly, T. (2004). Salinity tolerance in some Brassica oilseeds. Critical Reviews in Plant Sciences, 23, 154–174.

Biparva, P., Abedirad, S. M., & Kazemi, S. Y. (2014). ZnO nanoparticles as an oxidase mimic-mediated flow-injection chemiluminescence system for sensitive determination of carvedilol. Talanta, 130, 116–121.

Chen, L., Ren, F., Zhong, H., Feng, Y., Jiang, W., & Li, X. (2010). Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 10, 154–164.

Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21, 1166–1170.

Dietz, K. J., & Herth, S. (2011). Plant nano toxicology. Trends in Plant Sciences, 16, 582–589.

Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K., & Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. Journal of Hazardous Materials, 250–251, 318–332.

Fu, S. F., Chou, W. C., Huang, D. D., & Huang, H. J. (2002). Transcriptional regulation of a rice mitogen-activated protein kinase gene, Os MAPK4, in response to environmental stresses. Plant Cell Physiology, 43, 958–963.

Gill, P. K., Dev Sharma, A., Singh, P., & Singh Bhullar, S. (2001). Effect of various abiotic stresses on the growth, soluble sugars and water relations of sorghum seedling grown in light and darkness. Bulgarian Journal of Plant Physiology, 27, 72–84.

Glenn, E. P., Brown, J. J., & Khan, M. J. (1997). Mechanisms of salt tolerance in higher plants. In Basra A. S. & Basra R. K. (Eds.), Mechanisms of environmental stress resistance in plants (pp. 83–110). The Netherlands: Harwood Academic Publishers.

Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Journal, 276, 3148–3162.

Jonak, C., Nakagami, H., & Hirt, H. (2004). Heavy metal stress activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology, 136, 3276–3283.

Kazemi-Shahandashti, S. S., Maali Amiri, R., Zeinali, H., & Ramezanpour, S. S. (2013). Change in membrane fatty acid compositions and cold-induced responses in chickpea. Molecular Biology Reports, 40, 893–903.

Khudsar, T., Mahmooduzzafar, M., & Iqbal, M. (2001). Cadmium-induced change in leaf epidermes, photosynthetic rate and pigment concentrations in Cajanus cajan. Biologia Plantarum, 44, 59–64.

Kochert, G. (1978). Carbohydrate determination by phenol-sulfuric acid method. In J. A. Hellebust & J. S. Craige (Eds.), Handbook of physiological and biochemical methods (pp. 95–97). London: Cambridge University Press.

Landa, P., Vankova, R., Andrlova, J., Hodek, J., Marsik, P., Storchova, H., et al. (2012). Nano-particle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials, 241–242, 55–62.

Lee, W. M., An, Y. J., Yoon, H., & Kwbon, H. S. (2008). Toxicity and bioavailability of copper nano-particles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology Chemistry, 27, 1915–1921.

Lee, C. W., Mahindra, S., Zodrow, K., Li, D., Tsai, Y. C., & Braam, J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29, 669–675.

Liang, C., Feng, R., Hui, Z. H., Weimin, J., & Xuebao, L. (2010). Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 42, 154–164.

Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.

Lopez-Moreno, M. L., Dela-Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and Technology, 44, 7315–7320.

Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265–275.

Mizoguchi, T., Irie, K. T., Hirayama, N., Hayashida, K., Yamaguchi- Shinozaki, K., Matsumoto, K., & Shinozaki, A. (1996). Gene encoding a mitogen activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proceeding of the National Academy of Sciences USA, 93, 765–769.

Nair, P. M. G., & Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environmental Science and Pollution Research, 21, 12709–12722.

Panda, S. K., & Choudhury, S. (2005). Changes in nitrate reductase (NR) activity and oxidative stress in moss Polytrichum commune subjected to chromium, copper and zinc phytotoxicity. Brazilian Journal of Plant Physiology, 17, 191–197.

Park, J. E., Park, J. Y., Kim, Y. S., Staswick, P. E., Jeon, J., Yun, J., & Kim, S. Y. (2007). GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry, 282, 10036–10046.

Pedley, K. F., & Martin, G. B. (2005). Role of mitogen-activated protein kinases in plant immunity. Current Opinion in Plant Biology, 8, 541–547.

Satterlee, J. S., & Sussman, M. R. (1998). Unusual membrane-associated protein kinases in higher plants. Journal of Membrane Biology, 164, 205–213.

Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43–50.

Yu, S., Zhang, L., Zuo, K., Tang, D., & Tang, K. (2005). Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Plant Science, 169, 413–421.

Stone, J. M., & Walker, J. C. (1995). Plant protein kinase families and signal transduction. Plant Physiology, 108, 451–457.

Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceeding of the National Academy of Sciences USA, 101, 17306–17311.

Van Assche, F., Cardinaels, C., & Clijsters, H. (1988). Induction of enzyme capacity in plants as a result of heavy metal toxicity: Dose-Response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environmental Pollution, 52, 103–115.

Wang, Z., Fang, H., Chen, Y., Chen, K., Li, G., Gu, S., & Tan, X. (2014). Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Molecular Plant Pathology, 15, 677–689.

Wang, Z., Mao, H., Dong, C., Ji, R., Cai, L., Fu, H., & Liu, S. (2009). Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oil seed rape. Molecular Plant Microbe Interactions, 22, 235–244.

Wong, M. H., & Bradshaw, A. D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytologist, 91, 255–261.

Wong, M. K., Chuah, G. K., Ang, K. P., & Kohl, L. L. (1986). Interactive effects of lead, cadmium and copper combinations in the uptake of metals and growth of Brassica chinensis. Environmental and Experimental Botany, 26, 331–339.

Yang, Q., Chen, Z. Z., Zhou, X. F., Yin, H. B., Li, X., Xin, X. F., et al. (2009). Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2, 22–31.