Impact of the tariff concessions of the RCEP agreement on the structure and evolution mechanism of manufacturing trade networks
Tài liệu tham khảo
Athey, 2017, The state of applied econometrics: Causality and policy evaluation, J. Econ. Perspect., 31, 3, 10.1257/jep.31.2.3
Batagelj, 2001, A subquadratic triad census algorithm for large sparse networks with small maximum degree, Social Networks, 23, 237, 10.1016/S0378-8733(01)00035-1
Behrens, 2007, Countries, regions and trade: On the welfare impacts of economic integration, Eur. Econ. Rev., 51, 1277, 10.1016/j.euroecorev.2006.08.005
Blavasciunaite, 2020, Trade balance effects on economic growth: Evidence from European Union Countries, Economies, 8, 54, 10.3390/economies8030054
Blázquez, 2020, The role of services content for manufacturing competitiveness: A network analysis, PLoS One, 15, 10.1371/journal.pone.0226411
Blumenthal, 2020, On the exact computation of the graph edit distance, Pattern Recognit. Lett., 134, 46, 10.1016/j.patrec.2018.05.002
Böhringer, Christoph, Rutherford, Thomas F., Wiegard, Wolfgang, 2003. Computable General Equilibrium Analysis: Opening a Black Box. ZEW Discussion Paper No. 03-56, URL https://madoc.bib.uni-mannheim.de/363/.
Borgatti, 2000, Models of core/periphery structures, Social Networks, 21, 375, 10.1016/S0378-8733(99)00019-2
Borgatti, 2002
Bräuning, 2020, The dynamic factor network model with an application to international trade, J. Econometrics, 216, 494, 10.1016/j.jeconom.2019.10.007
Cepeda-López, 2019, The evolution of world trade from 1995 to 2014: A network approach, J. Int. Trade Econ. Dev., 28, 452, 10.1080/09638199.2018.1549588
Corong, 2017, The standard GTAP model, version 7, J. Glob. Econ. Anal., 2, 1
Cranmer, 2012, Complex dependencies in the alliance network, Conflict Manag. Peace Sci., 29, 279, 10.1177/0738894212443446
Creamer, 2013, Efficiency and trade network analysis of the electricity market: 1985–2005, 936
De Andrade, 2018, The use of nodes attributes in social network analysis with an application to an international trade network, Physica A Stat. Mech. Appl, 491, 249, 10.1016/j.physa.2017.08.126
De Benedictis, 2014, Network analysis of world trade using the BACI-CEPII dataset, Glob. Econ. J., 14, 287, 10.1515/gej-2014-0032
De Benedictis, 2011, The world trade network, World Econ, 34, 1417, 10.1111/j.1467-9701.2011.01360.x
Desmarais, 2017, Statistical inference in political networks research
Doehne, 2019, Krackhardt (1999): The ties that torture: Simmelian tie analysis in organizations, 305, 10.1007/978-3-658-21742-6_70
Drysdale, 2021, RCEP: a strategic opportunity for multilateralism, China Econ. J., 1
Elms, 2021, Getting RCEP across the line, World Trade Review, 1
Fagiolo, 2010, The international-trade network: gravity equations and topological properties, J. Econ. Interact. Coord., 5, 1, 10.1007/s11403-010-0061-y
Fagiolo, 2009, World-trade web: Topological properties, dynamics, and evolution, Phys. Rev. E, 79, 10.1103/PhysRevE.79.036115
Fagiolo, 2010, The evolution of the world trade web: a weighted-network analysis, J. Evolut. Econ., 20, 479, 10.1007/s00191-009-0160-x
Feng, 2020, Exploring the structure and influence factors of trade competitive advantage network along the Belt and road, Physica A Stat. Mech. Appl, 559, 10.1016/j.physa.2020.125057
Foulds, 2011, A dynamic relational infinite feature model for longitudinal social networks, 287
Frank, 1986, Markov graphs, J. Amer. Statist. Assoc., 81, 832, 10.1080/01621459.1986.10478342
Fritz, 2020, Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and continuous time, Stat. Neerl., 74, 275, 10.1111/stan.12198
Garlaschelli, 2007, Interplay between topology and dynamics in the World Trade Web, Eur. Phys. J. B, 57, 159, 10.1140/epjb/e2007-00131-6
Garlaschelli, 2004, Fitness-dependent topological properties of the world trade web, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.188701
Garlaschelli, 2004, Patterns of link reciprocity in directed networks, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.268701
Garlaschelli, 2005, Structure and evolution of the world trade network, Physica A Stat. Mech. Appl, 355, 138, 10.1016/j.physa.2005.02.075
Guan, 2020, Functional trade patterns and their contributions to international photovoltaic trade revealed by network motifs, Energy, 195, 10.1016/j.energy.2020.116989
Gutiérrez-Moya, 2021, Analysis and vulnerability of the international wheat trade network, Food Security, 13, 113, 10.1007/s12571-020-01117-9
Hagberg, 2008
Hanslow, 1999
Hassan, 2021, International trade and consumption-based carbon emissions: evaluating the role of composite risk for RCEP economies, Environ. Sci. Pollut. Res., 1
Hertel, 1997
Hertel, 2007, How confident can we be of CGE-based assessments of free trade agreements?, Econ. Model., 24, 611, 10.1016/j.econmod.2006.12.002
Hertel, 2000
Hoff, 2002, Latent space approaches to social network analysis, J. Amer. Statist. Assoc., 97, 1090, 10.1198/016214502388618906
Holland, 1981, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 33, 10.1080/01621459.1981.10477598
House, 2004, An overview of the globe research program
Hunter, 2006, Inference in curved exponential family models for networks, J. Comput. Graph. Statist., 15, 565, 10.1198/106186006X133069
Itakura, 2014, Impact of liberalization and improved connectivity and facilitation in ASEAN, J. Asian Econ., 35, 2, 10.1016/j.asieco.2014.09.002
Jain, 2019, Implications of SAFTA for Indian economy: Trade, compatibility and welfare effects, Foreign Trade Rev., 54, 355, 10.1177/0015732519874218
Kali, 2010, Financial contagion on the international trade network, Econ. Inq., 48, 1072, 10.1111/j.1465-7295.2009.00249.x
Khan, 2018, Economic implications of the comprehensive and progressive agreement for trans-Pacific partnership (CPTPP) on Pakistan: a CGE approach, J. Econ. Struct., 7, 1, 10.1186/s40008-017-0103-x
Khastar, 2020, How does carbon tax affect social welfare and emission reduction in Finland?, Energy Rep., 6, 736, 10.1016/j.egyr.2020.03.001
Kim, 2018, A review of dynamic network models with latent variables, Stat. Surv., 12, 105, 10.1214/18-SS121
Kim, 2002, A longitudinal analysis of globalization and regionalization in international trade: A social network approach, Soc. Forces, 81, 445, 10.1353/sof.2003.0014
Krivitsky, 2014, A separable model for dynamic networks, J. R. Stat. Soc. Ser. B Stat. Methodol., 76, 29, 10.1111/rssb.12014
Lakatos, 2012, Investment creation and diversion effects of the ASEAN–China free trade agreement, Econ. Model., 29, 766, 10.1016/j.econmod.2012.02.004
Lazarsfeld, 1954, Friendship as a social process: A substantive and methodological analysis, Freedom Control Modern Soc., 18, 18
Lebacher, 2021, A dynamic separable network model with actor heterogeneity: An application to global weapons transfers, J. R. Stat. Soc. Ser. A (Statistics in Society), 184, 201, 10.1111/rssa.12620
Lee, 2018, The welfare and sectoral adjustment effects of mega-regional trade agreements on ASEAN countries, J. Asian Econ., 55, 20, 10.1016/j.asieco.2017.09.001
Leifeld, 2018, Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals, J. Stat. Softw., 83, 10.18637/jss.v083.i06
Li, 2020, The US–China trade war: Tariff data and general equilibrium analysis, J. Asian Econ., 69, 10.1016/j.asieco.2020.101216
Liu, 2019, Analysis of the international polysilicon trade network, Resour. Conserv. Recy., 142, 122, 10.1016/j.resconrec.2018.11.025
Lusher, 2013
Mahadevan, 2019, Can the Regional Comprehensive Economic Partnership minimise the harm from the United States–China trade war?, World Econ, 42, 3148, 10.1111/twec.12851
Malcolm, 1998
Matous, 2016, Energy and resilience: the effects of endogenous interdependencies on trade network formation across space among major Japanese firms, Netw. Sci., 4, 141, 10.1017/nws.2015.37
McKibbin, 1999, The theoretical and empirical structure of the G-cubed model, Econ. Model., 16, 123, 10.1016/S0264-9993(98)00035-2
Milo, 2004, Superfamilies of evolved and designed networks, Science, 303, 1538, 10.1126/science.1089167
Milo, 2002, Network motifs: simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824
Narayanan, 2021, A method to analyze the sectoral impact of fiscal support for COVID-19 affected economies: The case of oceania, MethodsX, 8, 10.1016/j.mex.2021.101293
Nguyen, 2016, Economic integration in ASEAN+ 3: A network analysis, J. Econ. Integration, 275, 10.11130/jei.2016.31.2.275
Nkolo, 2018, Income-generating effects of biofuel policies: a meta-analysis of the CGE literature, Ecol. Econom., 147, 230, 10.1016/j.ecolecon.2018.01.025
Pan, 2018, Varieties of intergovernmental organization memberships and structural effects in the world trade network, Adv. Complex Syst., 21, 10.1142/S0219525918500017
Park, 2021, The economics of conflict and cooperation in the Asia-Pacific: RCEP, CPTPP and the US-China trade war, East Asian Econ. Rev., 25, 233, 10.11644/KIEP.EAER.2021.25.3.397
Perali, 2012, World tariff liberalization in agriculture: An assessment using a global CGE trade model for EU15 regions, J. Policy Model., 34, 155, 10.1016/j.jpolmod.2012.01.002
Prell, 2016, The evolution of global trade and impacts on countries’ carbon trade imbalances, Social Networks, 46, 87, 10.1016/j.socnet.2016.03.001
Reyes, 2008, Assessing the evolution of international economic integration using random walk betweenness centrality: The cases of east asia and latin america, Adv. Complex Syst., 11, 685, 10.1142/S0219525908001945
Ripley, 2011
Robert, 1976, Econometric policy evaluation: A critique, Carnegie-Rochester Conf. Ser. Publ. Policy, 1, 19, 10.1016/S0167-2231(76)80003-6
Robins, 2001, Random graph models for temporal processes in social networks, J. Math. Sociol., 25, 5, 10.1080/0022250X.2001.9990243
Robins, 2007, Recent developments in exponential random graph (p*) models for social networks, Social Networks, 29, 192, 10.1016/j.socnet.2006.08.003
Sarkar, 2005, Dynamic social network analysis using latent space models, Acm Sigkdd Explor. Newsletter, 7, 31, 10.1145/1117454.1117459
Savitzky, 1964, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36, 1627, 10.1021/ac60214a047
Serrano, 2003, Topology of the world trade web, Phys. Rev. E, 68, 10.1103/PhysRevE.68.015101
Sewell, 2015, Latent space models for dynamic networks, J. Amer. Statist. Assoc., 110, 1646, 10.1080/01621459.2014.988214
Sewell, 2016, Latent space models for dynamic networks with weighted edges, Social Networks, 44, 105, 10.1016/j.socnet.2015.07.005
Shimizu, 2021, The ASEAN economic community and the RCEP in world econ, J. Contemp. East Asia Stud., 10, 1, 10.1080/24761028.2021.1907881
Smith, 2019, International production and trade in a high-tech industry: A multilevel network analysis, Social Networks, 59, 50, 10.1016/j.socnet.2019.05.003
Smith, 2022, How does the behaviour of the core differ from the periphery?–an international trade network analysis, Social Networks, 70, 1, 10.1016/j.socnet.2021.11.001
Snijders, 2001, The statistical evaluation of social network dynamics, Sociol. Methodol., 31, 361, 10.1111/0081-1750.00099
Snijders, 2010, Introduction to stochastic actor-based models for network dynamics, Social Networks, 32, 44, 10.1016/j.socnet.2009.02.004
Snijders, 2013, A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice, Social Networks, 35, 265, 10.1016/j.socnet.2012.05.005
Snijders, 2006, New specifications for exponential random graph models, Sociol. Methodol., 36, 99, 10.1111/j.1467-9531.2006.00176.x
Squartini, 2012, Triadic motifs and dyadic self-organization in the world trade network, 24
Steglich, 2010, Dynamic networks and behavior: Separating selection from influence, Sociol. Methodol., 40, 329, 10.1111/j.1467-9531.2010.01225.x
Theis, 2021, The global trade in E-waste: A network approach, Environ. Sociol., 7, 76, 10.1080/23251042.2020.1824308
Walmsley, 2000
Walmsley, 2006, A baseline scenario for the dynamic GTAP model, Dyn. Model. Appl. Glob. Econ. Anal., 136
Wang, 2020, Structure of the global plastic waste trade network and the impact of China’s import Ban, Resour. Conserv. Recy., 153, 10.1016/j.resconrec.2019.104591
Ward, 2013, Gravity’s rainbow: A dynamic latent space model for the world trade network, Netw. Sci., 1, 95, 10.1017/nws.2013.1
Wu, 2020, Do self-organization and relational embeddedness influence free trade agreements network formation? Evidence from an exponential random graph model, J. Int. Trade Econ. Dev., 29, 995, 10.1080/09638199.2020.1784254
Yin, 2016, Reciprocity in directed networks, Physica A Stat. Mech. Appl, 447, 71, 10.1016/j.physa.2015.12.008
Zhou, 2016, Structure and formation of top networks in international trade, 2001–2010, Social Networks, 44, 9, 10.1016/j.socnet.2015.07.006