Tác động của vi tảo Dunaliella salina (Dunal) Teodoresco và chiết xuất β-carotene của nó đến sự phát triển của bí ngòi (Cucurbita pepo L. cv. Mabrouka) bị stress do muối

Physiology and Molecular Biology of Plants - Tập 28 - Trang 749-762 - 2022
Magda F. El-Adl1, Mohamed A. Deyab1, Mai A. Ghazal2, Abdelgawad Y. Elsadany2
1Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
2Cyanobacteria Research Laboratory, Microbiology Department, Sakha Agricultural Research Station-Soils, Water and Environment Research Institute, Giza, Egypt

Tóm tắt

Độ mặn là một mối đe dọa lớn đối với sản xuất cây trồng và an ninh lương thực toàn cầu. Tảo và các chế phẩm chiết xuất của nó chứa các hợp chất sinh học có thể tăng cường khả năng chịu mặn của thực vật, bao gồm cả các thực vật nhạy cảm với muối. Nghiên cứu hiện tại đã đánh giá hiệu quả của việc nuôi cấy Dunaliella salina (Dunal) Teodoresco và/hoặc chiết xuất β-carotene của nó trong việc cải thiện khả năng chịu mặn của bí ngòi (Cucurbita pepo L. cv. Mabrouka). Việc bổ sung D. salina cho C. pepo và/hoặc chiết xuất β-carotene của nó hiệu quả hơn trong việc giảm thiểu tác động của độ mặn vừa phải do pha loãng nước biển 2.5 dS m−1 gây ra so với độ mặn thấp (0.55 dS m−1) hoặc cao (3.5 dS m−1), với hiệu quả tương đương với axit salicylic (SA). Những cây nhận được sự kết hợp giữa nuôi cấy D. salina và chiết xuất β-carotene cho thấy sự tăng trưởng (tổng sinh khối, năng suất trái) và các thuộc tính sinh lý (pigment photosynthetic, nitơ (N), phospho (P) và kali (K+) nội dung) đáng kể hơn so với những cây chỉ nhận một chế phẩm duy nhất, đạt tới 80–90% của các cây được điều trị bằng SA ở độ mặn vừa phải (2.5 dS m−1). Sự kết hợp này có thể làm tăng hoạt động chống oxy hóa của C. pepo bị stress do muối một cách vừa phải thông qua việc tăng cường hàm lượng carotenoid và phenolic, cho thấy rằng sự kết hợp này có thể nâng cao khả năng thích ứng của C. pepo với độ mặn vừa phải. Nghiên cứu hiện tại khuyến nghị sử dụng các bông của D. salina và β-carotene mà nó tiết ra một cách tự nhiên trong các hệ thống tự nhiên hoặc tổng hợp để cải thiện khả năng chịu mặn của C. pepo thay vì sử dụng các hormone tổng hợp đắt tiền.

Từ khóa


Tài liệu tham khảo

Bulgari R, Trivellini A, Ferrante A (2019) Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front Plant Sci 9:1870 Canakci S, Munzuroglu O (2007) Effect of acetylsalicylic acid on germination growth and chlorophyll amount of cucumber (Cucumis sativus L) seeds. Pak J Biol Sci 10(17):2930–2934 Carillo P, Ciarmiello LF, Woodrow P, Corrado G, Chiaiese P, Rouphael Y (2020) Enhancing sustainability by improving plant salt tolerance through macro-and micro-algal. Biostimul Biol 9:253 Cebrián G, Iglesias-Moya J, García A, Martínez J, Romero J, Regalado JJ et al (2021) Involvement of ethylene receptors in the salt tolerance response of Cucurbita pepo. Horticult Res 8:926 Cvetkovic D, Fiedor L, Fiedor J, Wiśniewska-Becker A, Markovic D (2013) Molecular base for carotenoids antioxidant activity in model and biological systems: the health-related effects. In: Yamaguchi M (ed) Carotenoids: Food Sources, Production and Health Benefits. Atlanta, pp 93–126 Desoky EM, Merwad ARM, Rady MM (2018) Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun Soil Sci Plant Anal 49:967–983 Deyab MA, El-Sadany AY, Ghazal MA, El-Adl MF (2021) Nitrogen deficiency maximizes the production and accumulation of β-carotene via induction of different macromolecule derivatives in Dunaliella salina (Dunal) Teodoresco. Egypt J Bot 61(2):453–466 Dutta T, Rahman MM, Bhuiya SU, Kader MA (2015) Use of organic amendment for amelioration of salinity stress in transplanted aman rice cv. BRRI dhan41. Int J Soc Sci 2(5):82–94 El-Adl MF, El-Katony TM, Nada RM (2021) High external Na+, but not K+, stimulates the growth of Ulva lactuca (L.) via induction of the plasma membrane ATPases and achievement of K+/Na+ homeostasis. Plant Physiol Biochem 163:239–249 El-Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A et al (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30(5):2929–2941 El-Katony TM, Deyab MA, El-Adl MF, Ward FMEN (2020) The aqueous extract and powder of the brown alga Dictyota dichotoma (Hudson) differentially alleviate the impact of abiotic stress on rice (Oryza sativa L). Physiol Mol Biol Plants 26(6):1155–1171 Elwan MWM, El-Hamahmy MAM (2009) Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci Hortic 122(4):521–526 Elwan MWM, El-Shatoury R (2012) Salicylic acid positively affected plant growth, photosynthetic leaf pigments and fruit yield of summer squash (Cucurbita pepo L.) grown under different N-levels. J Plant Prod 3(7):2123–2138 Geries LSM, Elsadany R (2021) Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Arch Microbiol 203(1):169–181 Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-prospects and challenges. Algal Res 2:79–97 Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787 Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2013) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26:619–628 Hopkins WG (1995) Introduction to plant physiology. Wiley, New York, p 464 Jackson ML (1967) Soil chemical analysis prentice. Hall of India Private Limited, New Delhi, p 205 Jamil M, Bashir S, Anwar S, Bibi S, Bangash A, Ullah F, Rha ES (2012) Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak J Bot 44(1):7–13 Jan AU, Hadi F, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149 Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophylic alga Dunaliella viridis. J Bacteriol 95:1461–1468 Kusvuran S (2010) Relationships between physiological mechanisms of tolerances to drought and salinity in melons. Doctora Thesis (Unpublished), Graduate School of Natural and Applied Sciences, Çukurova Üniversitesi, Adana, Turkey (in Turkish) Lee YH, Shen H (2004) Basic culturing techniques. In: Richmond A (ed) Handbook of microalgal culture, biotechnology and applied phycology. Blackwell Science, Oxford, pp 40–56 Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Znzymol 148:350–382 Lowe LE (1993) Water soluble phenolic materials. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian society of soil science. CRC Press, Boca Raton, pp 409–412 Mane AV, Saratale GD, Karadge BA, Samant JS (2011) Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emirates J Food Agric 23:59–70 Mutale-joan C, Redouane B, Najib E, Yassine K, Lyamlouli K, Laila S, Zeroual Y, El Arroussi H (2020) Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci Rep 10:2820 Page AL, Miller H, Keeney DR (1982) Methods of soil analysis part 2, ASA, SSSA, Madison, Wisconsin Paiva SA, Russell RM (1999) Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 18(5):426–433. https://doi.org/10.1080/07315724.1999.10718880 Panda D, Pramanik K, Nayak BR (2012) Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int J Bio-Resour Stress Manag 3(3):404–411 Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10(1):7–15 Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134 Raposo M, de Morais A, de Morais R (2015) Carotenoids from marine microalgae: a valuable natural source for the prevention of chronic diseases. Mar Drugs 13(8):5128–5155 Romero L, Belakbir A, Ragala L, Ruiz JM (1997) Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L). Soil Sci Plant Nutr 43:855–862 Salem N, Msaada K, Dhifi W, Limam F, Marzouk B (2014) Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta Physiol Plant 36:433–445 Sauvesty A, Page F, Huot J (1992) A simple method for extracting plant phenolic compounds. Can J for Res 22:654–659 Sehrawat N, Yadav M, Sharma AK, Kumar V, Bhat KV (2019) Salt stress and mungbean [Vignaradiata (L.) Wilczek]: effects physiological perspective and management practices for alleviating salinity. Arch Agron Soil Sci 65(9):1287–1301 Shaki F, Maboud HE, Niknam V (2018) Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.) by salicylic acid. Curr Plant Biol 13:16–22 Smith GS, Johnston CM, Cornforth IS (1983) Comparison of nutrient solutions for growth of plants in sand culture. New Phytol 94(4):537–548 Snedecor GW (1956) Statistical methods: applied to experiments in agriculture and biology. The Iowa State College Press, New York Snell FD, Sneu CT (1967) Colorimetric methods of analysis. D.V on Nastrand Company Inc, New York, pp 551–552 Sonar BA, Nivas MD, Gaikwad DK, Chavan PD (2011) Assessment of salinity-induced antioxidative defense system in Colubrina asiatica brong. J Stress Physiol Biochem 7:193–200 Suvarnakuta P, Devahastin S, Mujumdar AS (2005) Drying kinetics and β-carotene degradation in carrot undergoing different drying processes. J Food Sci 70(8):s520–s526 Suzuki T, Nakashima M, Ohishi N, Yagi K (1996) A simple procedure for large-scale purification of 9-cis β-carotene from Dunaliella bardawil. IUBMB Life 39(6):1077–1084 Taibi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312 Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126 Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510 Ueda A, Kanechi M, Uno Y, Inagaki N (2003) Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J Plant Res 116:65–70 Vural H, Eşiyok D, Duman İ (2000) The culture Vegetables (Vegetable Growing). Ege University Publishing İzmir Turkey (in Turkish) Whapham CA, Blunden G, Jenkins T, Hankins SD (1993) Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5:231–234