Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lipson, H., and Kurman, M. (2013). Fabricated: The New World of 3D Printing, John Wiley and Sons, Inc.
Garlotta, 2002, A Literature Review of Poly(Lactic Acid), J. Polym. Environ., 9, 36
Henton, D.E., Patrick, G., Lunt, J., and Randall, J. (2005). Polylactic Acid Technology, Natural Fibers, Biopolymers, and Biocomposites, Taylor & Francis.
Athanasiou, 1996, Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/Polyglycolic Acid Copolymers, Biomaterials, 17, 93, 10.1016/0142-9612(96)85754-1
Proikakis, 2006, The role of Polymer/Drug interactions on the Sustained Release from Poly(d, l-Lactic acid) Tablets, Eur. Polym. J., 4, 3269, 10.1016/j.eurpolymj.2006.08.023
Kulkarni, R.K., Pani, K.C., Neuman, C., and Leonard, F. (1966). Polylactic Acid for Surgical Implants, U.S. Army Medical Biomechanical Research Laboratory/Walter Reed Army Medical Center. Technical Report 6608.
Timrak, 2014, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater. Des., 58, 242, 10.1016/j.matdes.2014.02.038
Oliveira, 1997, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 28, 873, 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
Hanesch, 2009, Raman Spectroscopy of Iron Oxides and (oxy)hydroxides at Low laser Power and Possible Applications in Environmental Magnetic Studies, Geophys. Int., 177, 941, 10.1111/j.1365-246X.2009.04122.x
Luo, 2011, Characterization and Carbonization of Highly Oriented Poly(diiododiacetylene) Nanofibers, Macromolecules, 44, 2626, 10.1021/ma102324r
Savutsky, 1964, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627, 10.1021/ac60214a047
Briggs, D., and Seah, M.P. (1993). Practical Surface Analysis, Wiley, John and Sons.
Halada, 1993, Comparison of Mo-N and W-N Synergism During Passivation of Stainless Steel through X-ray Photoelectron Spectroscopy and Electrochemical Analysis, J. Vac. Sci. Technol. A, 11, 2342, 10.1116/1.578373
Halada, 1996, The Influence of Nitrogen on the Electrochemical Passivation of High Ni Stainless Steels and Thin Mo-Ni Films, Corrosion, 52, 36, 10.5006/1.3292093
Chidambaram, 2003, A Duplex Mechanism-Based Model for the Interaction Between Chromate Ions and the Hydrated Oxide Film on Aluminum Alloys, J. Electrochem. Soc., 150, B224, 10.1149/1.1566020
Solarski, 2005, Charicterization of the Thermal Properties of PLA Fibers by Modulated Differential Scanning Calorimetry, Polymer, 46, 11187, 10.1016/j.polymer.2005.10.027
Giannitelli, 2015, Combined additive manufacturing approaches in tissue engineering, Acta Biomater., 24, 1, 10.1016/j.actbio.2015.06.032
Wang, 2016, Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration, Acta Biomater., 46, 256, 10.1016/j.actbio.2016.09.030
Vasquez, 2002, Spatially resolved microchemical analysis of chromate-conversion-coated aluminum alloy AA2024-T3, Surf. Interface Anal., 33, 796, 10.1002/sia.1456
Berg, 2014, Spectral features of biogenic calcium carbonates and implications for astrobiology, Int. J. Astrobiol., 13, 353, 10.1017/S1473550414000366
Roberson, D.A., Carmen, R.R., and Piñon, M. (2017, March 15). Evaluation of 3D Printable Sustainable Composites. Available online: https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-75-Roberson.pdf.
Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies, Tables and Charts, John Wiley and Sons. [3rd ed.].
Suzuki, 2013, Applications and Analysis of a DSC-Raman Spectroscopy for Indium and Poly(lactic acid), J. Therm. Anal. Calorim., 113, 1543, 10.1007/s10973-013-3098-z
Kister, 1998, Effects of Morphology, Conformation and Configuration on the IR and Raman Spectra of Various Poly(lactic acid)s, Polymers, 39, 267, 10.1016/S0032-3861(97)00229-2
Hutmacher, 2000, Scaffolding in Tissue Engineering Bone and Cartilage, Biomaterial, 21, 2529, 10.1016/S0142-9612(00)00121-6
Cao, 2003, DSC Study of Biodegradable Poly(lactic acid) and Poly(hydroxyl ester ether) Blends, Thermochim. Acta, 406, 115, 10.1016/S0040-6031(03)00252-1
Jalali, 2016, Effect of Thermal History on Nucleation and Crystallization of Poly(lactic acid), Mater. Sci., 51, 7768, 10.1007/s10853-016-0059-5
Halada, 2014, Aqueous Electrochemical Synthesis of Stable Silver Metal Nanoparticles onto a Chitosan Matrix on Stainless Steel, ECS Trans., 58, 19, 10.1149/05842.0019ecst
Li, 1999, Further investigations on Hydrolytic Degradation of Poly (dl-Lactide), Biomaterial, 20, 34, 10.1016/S0142-9612(97)00226-3
Arias, 2001, New Insights into Hydrolytic Degradation of Poly (lactic acid) Participation of the Alcohol Terminus, Polymers, 42, 2795, 10.1016/S0032-3861(00)00646-7
Lamnawar, 2012, Improvement of Thermal Stability, Rheology and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy, Polym. Degrad. Stab., 97, 1898, 10.1016/j.polymdegradstab.2012.06.028
Carrasco, 2010, Processing of Poly(lactic acid): Characterization of chemical Structure, Thermal Stability and Mechanical Properties, Polym. Degrad. Stab., 90, 116, 10.1016/j.polymdegradstab.2009.11.045
Yuzay, 2010, Effects of Synthetic and Natural Zeolites on Morphology and Thermal Degradation of Poly(lactic acid) Composites, Polym. Degrad. Stab., 95, 1769, 10.1016/j.polymdegradstab.2010.05.011
Ventola, 2014, Medical Applications for 3D Printing: Current and Projected Uses, Pharm. Ther., 39, 700