Impact of socioeconomic inequalities on geographic disparities in cancer incidence: comparison of methods for spatial disease mapping

BMC Medical Research Methodology - Tập 16 - Trang 1-14 - 2016
Juste Aristide Goungounga1, Jean Gaudart1,2, Marc Colonna3, Roch Giorgi1,2
1Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Marseille, France
2APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l’Information et de la Communication, Marseille, France
3Registre des cancers de l’Isère, CHU de Grenoble, Grenoble, France

Tóm tắt

The reliability of spatial statistics is often put into question because real spatial variations may not be found, especially in heterogeneous areas. Our objective was to compare empirically different cluster detection methods. We assessed their ability to find spatial clusters of cancer cases and evaluated the impact of the socioeconomic status (e.g., the Townsend index) on cancer incidence. Moran’s I, the empirical Bayes index (EBI), and Potthoff-Whittinghill test were used to investigate the general clustering. The local cluster detection methods were: i) the spatial oblique decision tree (SpODT); ii) the spatial scan statistic of Kulldorff (SaTScan); and, iii) the hierarchical Bayesian spatial modeling (HBSM) in a univariate and multivariate setting. These methods were used with and without introducing the Townsend index of socioeconomic deprivation known to be related to the distribution of cancer incidence. Incidence data stemmed from the Cancer Registry of Isère and were limited to prostate, lung, colon-rectum, and bladder cancers diagnosed between 1999 and 2007 in men only. The study found a spatial heterogeneity (p < 0.01) and an autocorrelation for prostate (EBI = 0.02; p = 0.001), lung (EBI = 0.01; p = 0.019) and bladder (EBI = 0.007; p = 0.05) cancers. After introduction of the Townsend index, SaTScan failed in finding cancers clusters. This introduction changed the results obtained with the other methods. SpODT identified five spatial classes (p < 0.05): four in the Western and one in the Northern parts of the study area (standardized incidence ratios: 1.68, 1.39, 1.14, 1.12, and 1.16, respectively). In the univariate setting, the Bayesian smoothing method found the same clusters as the two other methods (RR >1.2). The multivariate HBSM found a spatial correlation between lung and bladder cancers (r = 0.6). In spatial analysis of cancer incidence, SpODT and HBSM may be used not only for cluster detection but also for searching for confounding or etiological factors in small areas. Moreover, the multivariate HBSM offers a flexible and meaningful modeling of spatial variations; it shows plausible previously unknown associations between various cancers.

Tài liệu tham khảo

Lawson A, Biggeri A, Böhning D, Lesaffre E, Viel J-F, Bertollini R, et al. Disease mapping and risk assessment for public health. Chichester, UK: John Wiley & Sons; 1999. Lawson AB. Denison DGT. Spatial Cluster Modelling: CRC Press; 2010. Walter SD. Visual and statistical assessment of spatial clustering in mapped data. Stat Med. 1993;12:1275–91. Lawson AB. Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Second Edition. New York: CRC press; 2013. Colonna M, Sauleau E-A. How to interpret and choose a Bayesian spatial model and a Poisson regression model in the context of describing small area cancer risks variations. Rev Epidemiol Sante Publique. 2013;61:559–67. doi:10.1016/j.respe.2013.07.686. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med. 1995;14:799–810. Guttmann A, Ouchchane L, Li X, Perthus I, Gaudart J, Demongeot J, et al. Performance map of a cluster detection test using extended power. Int J Health Geogr. 2013;12:47. doi:10.1186/1476-072X-12-47. Huang L, Pickle LW, Das B. Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Stat Med. 2008;27:5111–42. doi:10.1002/sim.3342. Potthoff RF, Whittinghill M. Testing for Homogeneity: II. The Poisson Distribution. Biometrika. 1966;53:183. doi:10.2307/2334063. Cliff AD, Ord JK. Spatial autocorrelation. vol. 5. Pion London; 1973. Kulldorff M. A spatial scan statistic. Commun Stat-Theory Methods. 1997;26:1481–96. Gaudart J, Poudiougou B, Ranque S, Doumbo O. Oblique decision trees for spatial pattern detection: optimal algorithm and application to malaria risk. BMC Med Res Methodol. 2005;5:22. doi:10.1186/1471-2288-5-22. Landier J, Gaudart J, Carolan K, Lo Seen D, Guégan J-F, Eyangoh S, et al. Spatio-temporal Patterns and Landscape-Associated Risk of Buruli Ulcer in Akonolinga, Cameroon. PLoS Negl Trop Dis. 2014;8:e3123. doi:10.1371/journal.pntd.0003123. Anderson NH, Titterington DM. Some Methods for Investigating Spatial Clustering, with Epidemiological Applications. J R Stat Soc Ser A Stat Soc. 1997;160:87–105. Liang S, Carlin BP, Gelfand AE. Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. Ann Appl Stat. 2009;3:943–62. doi:10.1214/09-AOAS240. Jacquez GM, Greiling DA. Local clustering in breast, lung and colorectal cancer in Long Island, New York. Int J Health Geogr. 2003;2:3. doi:10.1186/1476-072X-2-3. Johnson GD. Small area mapping of prostate cancer incidence in New York State (USA) using fully Bayesian hierarchical modelling. Int J Health Geogr. 2004;3:29. doi:10.1186/1476-072X-3-29. Cassetti T, La Rosa F, Rossi L, D’Alò D, Stracci F. Cancer incidence in men: a cluster analysis of spatial patterns. BMC Cancer. 2008;8:344. doi:10.1186/1471-2407-8-344. Mao Y, Hu J, Ugnat A-M, Semenciw R, Fincham S, Group and the CCRER. Socioeconomic status and lung cancer risk in Canada. Int J Epidemiol. 2001;30:809–17. doi:10.1093/ije/30.4.809. Botella-Rocamora P, Martinez-Beneito MA, Banerjee S. A unifying modeling framework for highly multivariate disease mapping: A unifying modeling framework for highly multivariate disease mapping. Stat Med. 2015;34:1548–59. doi:10.1002/sim.6423. Townsend P. Deprivation. J Soc Policy. 1987;16:125–46. doi:10.1017/S0047279400020341. Levy D, Roux V. Recensement de la population de 2006, Provence-Alpes-Côte d’Azur: une région très urbaine, une croissance équilibrée. Sud INSEE l’essentiel; 2009. Auchincloss AH, Gebreab SY, Mair C, Diez Roux AV. A Review of Spatial Methods in Epidemiology, 2000–2010. Annu Rev Public Health. 2012;33:107–22. doi:10.1146/annurev-publhealth-031811-124655. Muirhead CR. Methods for detecting disease clustering, with consideration of childhood leukaemia. Stat Methods Med Res. 2006;15:363–83. doi:10.1191/0962280206sm457oa. Jung I, Kulldorff M. Theoretical properties of tests for spatial clustering of count data. Can J Stat. 2007;35:433–46. doi:10.1002/cjs.5550350307. Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math. 1991;43:1–20. Gaudart J, Graffeo N, Coulibaly D, Barbet G, Rebaudet S, Dessay N, et al. SPODT: An R Package to Perform Spatial Partitioning. J Stat Softw. 2015;63:1–23. Waller LA, Gotway CA. Applied spatial statistics for public health data. vol. 368. Hoboken, N.J: John Wiley & Sons; 2004 Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25:3929–43. Gelman A, et al. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1:515–34. Gerber F, Furrer R. Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models. J Stat Softw 2015;63. doi:10.18637/jss.v063.c01. Lemke D, Mattauch V, Heidinger O, Pebesma E, Hense H-W. Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study. Int J Health Geogr. 2013;12:54. doi:10.1186/1476-072X-12-54. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol. 2002;64:583–639. doi:10.1111/1467-9868.00353. MMartinez-Beneito MA. A general modelling framework for multivariate disease mapping. Biometrika. 2013;100:539–53. doi:10.1093/biomet/ast023. MacNab YC. On Gaussian Markov random fields and Bayesian disease mapping. Stat Methods Med Res 2011;20:49–68. Jin X, Banerjee S, Carlin BP. Order‐free co‐regionalized areal data models with application to multiple‐disease mapping. J R Stat Soc Ser B Stat Methodol. 2007;69:817–38. Gelfand AE, Vounatsou P. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics. 2003;4:11–5. Bivand R. Package “spdep”: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.5–56 2013. Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A. Detecting clusters of disease with R. J Geogr Syst. 2005;7:189–206. Gómez-Rubio V, López-Quílez A. Statistical methods for the geographical analysis of rare diseases. Rare Dis. Epidemiol., Springer; 2010, p. 151–71. Sturtz S, Ligges U, Gelman A. R2WinBUGS : A Package for Running WinBUGS from R. J Stat Softw 2005;12. doi:10.18637/jss.v012.i03. Guttmann A, Li X, Gaudart J, Gérard Y, Demongeot J, Boire J-Y, et al. Spatial heterogeneity of type I error for local cluster detection tests. Int J Health Geogr. 2014;13:15. doi:10.1186/1476-072X-13-15. Assunção RM, Reis EA. A new proposal to adjust Moran’s I for population density. Stat Med. 1999;18:2147–62. doi:10.1002/(SICI)1097-0258(19990830)18:16<2147::AID-SIM179>3.0.CO;2-I. Sherman RL, Henry KA, Tannenbaum SL, Feaster DJ, Kobetz E, Lee DJ. Applying Spatial Analysis Tools in Public Health: An Example Using SaTScan to Detect Geographic Targets for Colorectal Cancer Screening Interventions. Prev Chronic Dis 2014;11. doi:10.5888/pcd11.130264. Wakefield JC, Best NG, Waller LA. Bayesian approaches to disease mapping. In Elliott P, Wakefield JC, Best NG, Briggs DJ eds. Spatial epidemiology: methods and applications. Oxford: Oxford University Press; 2000. p. 104–127. Aamodt G, Samuelsen SO, Skrondal A. A simulation study of three methods for detecting disease clusters. Int J Health Geogr. 2006;5:15. doi:10.1186/1476-072X-5-15. Ozonoff A, Jeffery C, Manjourides J, Forsberg White L, Pagano M. Effect of spatial resolution on cluster detection: a simulation study. Int J Health Geogr. 2007;6:52. doi:10.1186/1476-072X-6-52. Jeffery C, Ozonoff A, White LF, Nuno M, Pagano M. Power to Detect Spatial Disturbances under Different Levels of Geographic Aggregation. J Am Med Inform Assoc. 2009;16:847–54. doi:10.1197/jamia.M2788. Goujon-Bellec S, Demoury C, Guyot-Goubin A, Hémon D, Clavel J. Detection of clusters of a rare disease over a large territory: performance of cluster detection methods. Int J Health Geogr. 2011;10:53. doi:10.1186/1476-072X-10-53. Alton GD, Pearl DL, Bateman KG, McNab B, Berke O. Comparison of covariate adjustment methods using space-time scan statistics for food animal syndromic surveillance. BMC Vet Res. 2013;9:231. doi:10.1186/1746-6148-9-231. Tran A. Mapping Disease Incidence in Suburban Areas using Remotely Sensed Data. Am J Epidemiol. 2002;156:662–8. doi:10.1093/aje/kwf091. Lyratzopoulos G, Barbiere JM, Rachet B, Baum M, Thompson MR, Coleman MP. Changes over time in socioeconomic inequalities in breast and rectal cancer survival in England and Wales during a 32-year period (1973–2004): the potential role of health care. Ann Oncol. 2011;22:1661–6. doi:10.1093/annonc/mdq647. Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet. 2011;377:127–38. doi:10.1016/S0140-6736(10)62231-3. Clayton DG, Bernardinelli L, Montomoli C. Spatial correlation in ecological analysis. Int J Epidemiol. 1993;22:1193–202. Hughes J, Haran M. Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc Ser B Stat Methodol. 2013;75:139–59. Reich BJ, Hodges JS, Zadnik V. Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease‐Mapping Models. Biometrics. 2006;62:1197–206.