Impact of plant domestication on rhizosphere microbiome assembly and functions

Plant Molecular Biology - Tập 90 Số 6 - Trang 635-644 - 2016
Juan E. Pérez‐Jaramillo1, Rodrigo Mendes2, Jos M. Raaijmakers1
1Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
2Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340 - km 127.5, Jaguariúna, 13820-000, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681. doi: 10.1111/j.1365-3040.2008.01926.x

Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20(6):642–650. doi: 10.1016/j.copbio.2009.09.014

Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288(7):4502–4512. doi: 10.1074/jbc.M112.433300

Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2):90–98. doi: 10.1016/j.tplants.2013.11.006

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159

Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–13. doi: 10.1007/s11104-012-1361-x

Bakker PAHM, Berendsen RL, Doombos RF, Wintermans PCA, Pieterse CML (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165. doi: 10.3389/fpls.2013.00165

Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant-microbe interactions. Curr Opin Plant Biol 13(4):378–387. doi: 10.1016/j.pbi.2010.05.002

Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. doi: 10.1016/j.tplants.2012.04.001

Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148. doi: 10.3389/fmicb.2014.00148

Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Spagnoletti Zeuli P, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA 109(14):E788–E796. doi: 10.1073/pnas.1108973109

Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313. doi: 10.1111/j.1469-8137.2012.04377.x

Bouffaud M-L, Poirier M-A, Mulle D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16:2804–2814. doi: 10.1111/1462-2920.12442

Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12(5):224–230. doi: 10.1016/j.tplants.2007.03.009

Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1(8):763–765. doi: 10.1038/ismej.2007.81

Budak H, Kantar M, Kurtoglu KY (2013) Drought tolerance in modern and wild wheat. Sci World J. doi: 10.1155/2013/548246

Bulgarelli D, Schlaeppi K, Spaepen S, Loren Ver, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi: 10.1146/annurev-arplant-050312-120106

Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403. doi: 10.1016/j.chom.2015.01.011

Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. doi: 10.1038/ismej.2013.196

Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58. doi: 10.1146/annurev-ento-010814-020601

Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92(10):4197–4201. doi: 10.1073/pnas.92.10.4197

de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180. doi: 10.1094/MPMI.2002.15.11.1173

de Werra P, Huser A, Tabacchi R, Keel C, Maurhofer M (2011) Plant- and microbe-derived compounds affect the expression of genes encoding antifungal compounds in a pseudomonad with biocontrol activity. Appl Environ Microbiol 77(8):2807–2812. doi: 10.1128/AEM.01760-10

Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321. doi: 10.1016/j.cell.2006.12.006

Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342(6158):621–624. doi: 10.1126/science.1243768

García-Palacios P, Milla R, Delgado-Baquerizo M, Martín-Robles N, Alvaro-Sánchez M, Wall DH (2013) Side-effects of plant domestication: ecosystem impacts of changes in litter quality. New Phytol 198(2):504–513. doi: 10.1111/nph.12127

Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24(2):1–44. doi: 10.1002/9780470650288.ch1

Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415. doi: 10.1007/s003740100343

Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180. doi: 10.1023/A:1010350406708

Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15(9):529–537. doi: 10.1016/j.tplants.2010.05.008

Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2(12):1221–1230. doi: 10.1038/ismej.2008.80

Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80. doi: 10.1016/j.soilbio.2014.06.017

Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24(7):1506–1517. doi: 10.1093/molbev/msm077

Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, Bizouard F, Germon JC, Philippot L (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10(11):3082–3092. doi: 10.1111/j.1462-2920.2008.01599.x

Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70(10):2032–2040. doi: 10.1139/b92-253

Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71(3):512–518. doi: 10.1139/b93-056

Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897. doi: 10.1139/b95-097

Inceoglu Ö, Falcão Salles J, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76(11):3675–3684. doi: 10.1128/AEM.00040-10

Inceoglu Ö, Abu Al-Soud W, Salles JF, Semenov AV, van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6(8):e23321. doi: 10.1371/journal.pone.0023321

Jackson LE (1995) Root architecture in cultivated and wild lettuce (Lactuca app). Plant Cell Environ 18:885–894. doi: 10.1111/j.1365-3040.1995.tb00597.x

Jin J, Wang GH, Liu XB, Liu JD, Chen XL, Herbert SJ (2009) Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere 19(6):808–816. doi: 10.1016/S1002-0160(09)60176-4

Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, Clair DA, Michelmore RW (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073. doi: 10.1007/s001220051581

Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi: 10.1111/j.1469-8137.2004.01130.x

Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0

Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant Microbe Interact 24(3):352–358. doi: 10.1094/MPMI-09-10-0208

Kapulnik Y, Kushnir U (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular–arbuscular mycorrhiza fungi. Euphytica 56:27–36. doi: 10.1007/BF00041740

Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236. doi: 10.1146/annurev.ecolsys.39.110707.173423

Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Biol Sci 274(1629):3119–3126. doi: 10.1098/rspb.2007.1187

Kim DH, Kaashyap M, Rathore A, Das RR, Parupalli S, Upadhyaya HD, Gopalakrishnan S, Gaur PM, Singh S, Kaur J, Yasin M, Varshney RK (2014) Phylogenetic diversity of Mesorhizobium in chickpea. J Biosci 39(3):513–517. doi: 10.1007/s12038-014-9429-9

Koide R, Li M, Lewis J, Irby C (1988) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. wild vs. cultivated oats. Oecologia 77:537–543. doi: 10.1007/BF00377271

Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494. doi: 10.1105/tpc.107.051672

Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661. doi: 10.1104/pp.112.200386

Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166(2):689–700. doi: 10.1104/pp.114.245811

Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250. doi: 10.1007/s11104-011-1095-1

Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379. doi: 10.1016/j.ejsobi.2011.08.009

Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, Smalla K (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88(2):424–435. doi: 10.1111/1574-6941.12313

Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509. doi: 10.1126/science.277.5325.504

Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno Y, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100. doi: 10.1126/science.1203980

Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi: 10.1111/1574-6976.12028

Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009a) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4(8):777–780. doi: 10.1093/jxb/erp053

Micallef SA, Shiaris MP, Colón-Carmona A (2009b) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60(6):1729–1742. doi: 10.1093/jxb/erp053

Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705. doi: 10.3732/ajb.1300033

Mounier E, Hallet S, Chèneby D, Benizri E, Gruet Y, Nguyen C, Piutti S, Robin C, Slezack-Deschaumes S, Martin-Laurent F, Germon JC, Philippot L (2004) Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 6(3):301–312. doi: 10.1111/j.1462-2920.2004.00571.x

Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi: 10.1007/s11104-006-9091-6

Mutch LA, Young JP (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13(8):2435–2444. doi: 10.1111/j.1365-294X.2004.02259.x

Naz AA, Ehl A, Pillen K, Léon J (2012) Validation for root-related quantitative trait locus effects of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breed 3:392–398. doi: 10.1111/j.1439-0523.2012.01972.x

Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Léon J (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet 15:107. doi: 10.1186/s12863-014-0107-6

Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498. doi: 10.1371/journal.pone.0035498

Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685. doi: 10.1111/j.1365-3040.2009.02107.x

Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167. doi: 10.1111/1462-2920.12228

Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173(2):975–983. doi: 10.1534/genetics.106.056473

Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101(26):9885–9890. doi: 10.1073/pnas.0307839101

Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110(16):6548–6553. doi: 10.1073/pnas.1302837110

Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Harkamal WH (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161(4):1806–1819. doi: 10.1104/pp.113.214262

Pongsilp N, Nimnoi P, Lumyong S (2012) Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques. World J Microbiol Biotechnol 28(2):615–626. doi: 10.1007/s11274-011-0855-7

Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848. doi: 10.1038/nature07895

Ram SG, Thiruvengadam V, Vinod KK (2007) Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet 48(4):337–345. doi: 10.1007/BF03195230

Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927. doi: 10.1111/j.1365-2486.2012.02639.x

Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737. doi: 10.1038/nature03451

Rodrigues JL, Pellizari VH, Mueller R, Baek K, Jesus Eda C, Paula FS, Mirza B, Hamaoui GS Jr, Tsai SM, Feigl B, Tiedje JM, Bohannan BJ, Nüsslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA 110(3):988–993. doi: 10.1073/pnas.1220608110

Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556. doi: 10.1104/pp.108.127613

Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fertil Soils 50:405–414. doi: 10.1007/s00374-013-0847-x

Sangabriel-Conde W, Maldonado-Mendoza IE, Mancera-López ME, Cordero-Ramírez JD, Trejo-Aguilar D, Negrete-Yankelevich S (2015) Glomeromycota associated with Mexican native maize landraces in Los Tuxtlas, Mexico. Appl Soil Ecol 87:63–71. doi: 10.1016/j.apsoil.2014.10.017

Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117(7):1093–1106. doi: 10.1007/s00122-008-0847-7

Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77(3):600–610. doi: 10.1111/j.1574-6941.2011.01150.x

Simko I, Atallah AJ, Ochoa OE, Antonise R, Galeano CH, Truco MJ, Michelmore MW (2013) Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Sci Rep 3:2875. doi: 10.1038/srep02875

Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67(10):4742–4751. doi: 10.1128/AEM.67.10.4742-4751.2001

Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491. doi: 10.1146/annurev.phyto.37.1.473

Smith KP, Handelsman J, Goodman RM (1997) Modeling dose-response relationships in biological control: partitioning host responses to the pathogen and biocontrol agent. Phytopathol 87(7):720–729. doi: 10.1094/PHYTO.1997.87.7.720

Sugiyama A, Ueda Y, Takase H, Yazaki K (2014a) Pyrosequencing assessment of rhizosphere fungal communities from a soybean field. Can J Microbiol 60(10):687–690. doi: 10.1139/cjm-2014-0443

Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014b) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9(6):e100709. doi: 10.1371/journal.pone.0100709

Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, McNear DH Jr (2015) Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol Biochem 80:34–44. doi: 10.1016/j.soilbio.2014.09.001

Turner TR, James EK, Poole PS (2013a) The plant microbiome. Genome Biol 14:209. doi: 10.1186/gb-2013-14-6-209

Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013b) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7(12):2248–2258. doi: 10.1038/ismej.2013.119

Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GE (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22(23):2242–2246. doi: 10.1016/j.cub.2012.09.043

Weese DJ, Heath KD, Dentinger BT, Lau JA (2015) Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69(3):631–642. doi: 10.1111/evo.12594

Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75(3):497–506. doi: 10.1111/j.1574-6941.2010.01025.x

Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39(2):283–297. doi: 10.1007/s10886-013-0248-5

Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67(12):5849–5854

Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere related traits. Plant Soil 321:409–430. doi: 10.1007/s11104-008-9693-2

Xing X, Koch AM, Jones AM, Ragone D, Murch S, Hart MM (2012) Mutualism breakdown in breadfruit domestication. Proc Biol Sci 22(279(1731)):1122–1130. doi: 10.1098/rspb.2011.1550

Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem 41:919–925. doi: 10.1016/j.soilbio.2008.10.027

Zachow C, Müller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front Microbiol 5:415. doi: 10.3389/fmicb.2014.00415

Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700. doi: 10.1007/s11104-013-1915-6

Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255. doi: 10.1023/A:1013343811110