Tác động của độ dày lớp nước ấm ở đại dương đến cường độ của bão Katrina trong một mô hình đôi khu vực

Meteorology and Atmospheric Physics - Tập 122 - Trang 19-32 - 2013
Hyodae Seo1, Shang-Ping Xie2
1Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, USA
2Scripps Institution of Oceanography, University of California, San Diego, La Jolla, USA

Tóm tắt

Tác động của cấu trúc nhiệt độ dưới bề mặt trước bão đến cường độ của bão Katrina (2005) được nghiên cứu bằng cách sử dụng một mô hình đôi khu vực. Dự đoán tình trạng đại dương Estimating Circulation and Climate of Ocean (ECCO) được sử dụng để khởi tạo thành phần đại dương của mô hình đôi, và nguồn gốc của các thiếu sót trong mô phỏng cường độ bão Katrina được điều tra liên quan đến độ sâu ban đầu của izoterm 26 °C (D26). Mô hình đánh giá thấp cường độ của bão Katrina phần nào do D26 nông trong ECCO. Các bài kiểm tra độ nhạy với nhiều trường khởi tạo ECCO khác nhau chỉ ra rằng mối quan hệ chính xác giữa cường độ và D26 không thể được rút ra vì sự biến thiên của D26 bị đánh giá thấp trong ECCO. Một loạt các thí nghiệm lý tưởng hóa được thực hiện bằng cách điều chỉnh D26 của ECCO ban đầu để phù hợp với phạm vi quan sát được. Một mối quan hệ hợp lý hơn giữa cường độ của bão Katrina và D26 trước bão xuất hiện: cường độ nhạy cảm nhiều hơn với D26 so với nhiệt độ bề mặt biển (SST). Quá trình trộn lớp nước đại dương đóng vai trò quan trọng trong việc điều chỉnh SST ở lõi bên trong khi D26 sâu, giảm thiểu sự làm mát của lớp trộn và hạ áp suất trung tâm của bão Katrina. Kết quả của chúng tôi hỗ trợ mạnh mẽ cho quan điểm rằng việc khởi tạo chính xác cấu trúc nhiệt độ dưới bề mặt trước bão trong các mô hình dự đoán là rất quan trọng cho khả năng dự đoán chính xác cường độ của bão Katrina và có thể là các cơn bão mạnh khác.

Từ khóa

#cường độ bão #mô hình đôi khu vực #nước ấm đại dương #nhiệt độ bề mặt biển #thí nghiệm lý tưởng hóa

Tài liệu tham khảo

Bender MA, Ginis I (2000) Real case simulations of hurricane–ocean interaction using a high resolution coupled model: Effects on hurricane intensity. Mon Weather Rev 126:917–946 Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I. Methodology. J Phys Oceanogr 30:294–309 Chang S, Anthes R (1978) Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J Phys Oceanogr 8:468–480 Chang S, Anthes R (1979) The mutual response of the tropical cyclone and the ocean. J Phys Oceanogr 9:128–135 Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796 Davis X, Rothstein L, Dewar W, Menemenlis D (2011) Numerical investigations of seasonal and interannual variability of North Pacific subtropical mode water and its implications for Pacific climate variability. J Clim 24:2648–2665 DeMaria M, Kaplan J (1994) A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast 9:209–220 DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J (2005) Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Weather Forecast 20:531–543 Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–666 Emanuel KA, DesAutles C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858 Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101:3747–3764 Falkovich A, Ginis I, Lord S (2005) Implementation of data assimilation and ocean initialization for the coupled GFDL/URI hurricane prediction system. J Atmos Ocean Technol 22:1918–1932 Gilson J, Roemmich D, Cornuelle B, Fu LL (1998) Relationship of TOPEX/Poseidon altimetric height to steric height and circulation of the North Pacific. J Geophys Res 103:27947–27965 Goni GJ, Knaff J (2009) Tropical cyclone heat potential. Bull Am Meteorol Soc 90:S54–S56 Goni GJ, Trinanes J (2003) Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS Trans Am Geophys Union 85:179 Goni GJ et al (2009) Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography 22(3):176–183 Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin. Simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281 Halliwell GR Jr, Shay LK, Uhlhorn E, Jacob SD, Smedstad O (2008) Initializing ocean models with GODAE ocean nowcast products for tropical cyclone forecasting. Mon Weather Rev 136:2576–2591 Halliwell GR Jr, Shay LK, Brewster JK, Teague WJ (2010) Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon Weather Rev 193:921–945. doi:10.1175/2010MWR3104.1 Hong X, Chang SW, Raman S, Shay LK, Hodur R (2000) The interaction of hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon Weather Rev 128:1347–1365 Jacob DS, Shay LK, Mariano AJ, Black PG (2000) The three-dimensional mixed layer heat balance during Hurricane Gilbert. J Phys Oceanogr 30:1407–1429 Jaimes B, Shay LK (2009) Mixed layer cooling in mesoscale eddies during Katrina and Rita. Mon Weather Rev 137(12):4188–4207 Jaimes B, Shay LK (2010) Near-inertial wave wake of hurricanes Katrina and Rita over mesoscale oceanic eddies. J Phys Oceanogr 40:1320–1337 Juang HMH, Kanamitsu M (1994) The NMC nested regional spectral model. Mon Weather Rev 122:3–26 Kain JS (2004) The Kain–Fritsch convective parameterization. An update. J Appl Meteorol 43:170–181 Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. The representation of cumulus convection in numerical models, Meteor. Monogr. No. 46, Amer. Meteor. Soc. 165–170 Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643 Kleinschmidt E Jr (1951) Gundlagen einer Theorie des tropischen Zyklonen. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie A 4:53–72 Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull Am Meteorol Soc 88:1549–1565 Kunze E (1985) Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr 15:544–565 Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224 Lin II, Wu CC, Emanuel KA, Lee IH, Wu CR, Pun IF (2005) The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133:2635–2649 Lin II, Pun IF, Ko DS (2008) Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part I. Ocean features and category-5 typhoon’s intensification. Mon Weather Rev 136:3288–3306 Lin II, Pun IF, Wu CC (2009) Upper ocean thermal structure and the western North Pacific Category-5 Typhoons Part II. Dependence on translation speed. Mon Weather Rev 137:3744–3757 Lin II, Goni GJ, Knaff JA, Forbes C, Ali MM (2012) Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat Hazards. doi:10.1007/s11069-012-0214-5 Lloyd I, Vecchi G (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24:1138–1153. doi:10.1175/2010JCLI3763.1 Lugo-Fernández A (2007) Is the loop current a chaotic oscillator? J Phys Oceanogr 37:1455–1469 Mainelli M, DeMaria M, Shay LK, Goni G (2008) Application of oceanic heat content estimation to operational forecasting of recent category 5 hurricanes. Weather Forecast 23:3–16 Malkus JS, Riehl H (1960) On the dynamics and energy transformation in steady-state hurricanes. Tellus 12:1–20. doi:10.1111/j.2153-3490.1960.tb01279.x Menemenlis D, Campin J, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Q Newsl 31:13–21 Murakami H et al (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260 Nowlin WD, Jochens AE, DiMarco SF, Reid RO (2000) Physical oceanography. Deepwater Gulf of Mexico environmental and socioeconomic data search and synthesis, vol 1. Narrative Report, OCS Study MMS 2000-049, Gulf of Mexico OCS Regional Office, Minerals Management Service, U.S. Department of the Interior, New Orleans, LA, pp 61–121 Powell MD, Houston SH, Reinhold TA (1996) Hurricane Andrew’s landfall in South Florida. Part I: standardizing measurements for documentation of surface wind fields. Weather Forecast 11:304–328 Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175 Price JF (2009) Metrics of hurricane–ocean interaction. Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci 5:351–368 Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260 Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J. Clim 20:5473–5496 Riehl H (1963) Some relations between wind and thermal structure of steady state hurricanes. J Atmos Sci 20:276–287 Riehl H, Malkus JS (1961) Some aspects of Hurricane Daisy, 1958. Tellus 13:181–213 Sanford TB, Black PG, Haustein J, Fenney JW, Forristall GZ, Price JF (1987) Ocean response to hurricanes, Part I. Observations. J Phys Oceanogr 17:2065–2083 Sanford TB, Price JF, Girton JB, Webb DC (2007) Highly resolved ocean response to a hurricane. Geophys Res Lett 34:L13604 Schade LR (1994) The ocean’s effect on hurricane intensity. Ph.D. thesis, Massachusetts Institute of Technology, USA Schade LR, Emanuel KA (1999) The ocean’s effect on the intensity of tropical cyclones: results from a simple atmosphere-ocean model. J Atmos Sci 56:642–651 Scharroo R, Smith WH, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. EOS 86:366–367 Scoccimarro E et al (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24:4368–4384 Seo H, Miller AJ, Roads JO (2007) The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J Clim 20:381–402 Shay LK (2009) Upper ocean structure: a revisit of the response to strong forcing events. In: Steele J et al (eds) Encyclopedia of ocean sciences, pp 4619–4637. Elsevier Press, Amsterdam Shay LK, Brewster JK (2010) Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting. Mon. Wea. Rev. 138:2110–2131 Shay LK, Uhlhorn EW (2008) Loop Current response to Hurricanes Isidore and Lili. Mon. Wea. Rev. 136:3248–3274 Shay LK, Goni GJ, Black PG (2000) Effect of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev. 128:1366–1383 Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, Free-surface, topography-following-coordinate ocean model. Ocean Modell. 9:347–404 Sturges W, Leben R (2000) Frequency of Ring Separations from the Loop Current in the Gulf of Mexico: A Revised Estimate. J Phys Oceanogr 30:1814–1819 Sun D, Gautam R, Cervone G, Boybei Z, Kafatos M (2006) Comment on Satellite altimetry and the intensification of Hurricane Katrina. EOS Trans. AGU 87(8):89 Sutyrin GG, Khain AP (1984) On the effect of air–ocean interaction on the intensity of a moving tropical cyclone. Atmos Ocean Phys 20:787–794 Ubelmann C, Fu L (2011) Cyclonic eddies formed at the Pacific tropical instability wave fronts. J Geophys Res 116:C12021 Vukovich FM (1995) An updated evaluation of the loop current eddy-shedding frequency. J Geophys Res 100(C5):8655–8659 Wang Y (1998) On the bogusing of tropical cyclones in numerical models: the influence of vertical structure. Meteorol Atmos Phys 65:153–170 Weller RA (1982) The relation of near-inertial motions observed in the mixed-layer during the JASIN (1978) experiment to the local wind stress and to the quasigeostrophic flow field. J Phys Oceanogr 12:1122–1336 Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036 Willoughby HE, Black PG (1996) Hurricane Andrew in Florida. Dynamics of a disaster. Bull Am Meteorol Soc 77:543–549 Wu CC, Lee CY, Lin II (2007) The effect of the ocean eddy on tropical cyclone intensity. J Atmos Sci 64:3562–3578 Yablonsky RM, Ginis I (2008) Improving the initialization of coupled hurricane–ocean models using feature-based data-assimilation. Mon Weather Rev 136:2592–2607 Yoshimura K, Kanamitsu M (2008) Dynamical global downscaling of global reanalysis. Mon Weather Rev 136:2983–2998 Zamudio L, Hogan PJ (2008) Nesting the Gulf of Mexico in Atlantic HYCOM: oceanographic processes generated by Hurricane Ivan. Ocean Model 21:106–125 Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678 Zedler SE, Dickey TD, Doney SC, Price JF, Yu X, Mellor GL (2002) Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site. J Geophys Res 107(C12):3232. doi:10.1029/2001JC000969