Impact of misspecifying the distribution of a prognostic factor on power and sample size for testing treatment interactions in clinical trials

BMC Medical Research Methodology - Tập 13 - Trang 1-18 - 2013
William M Reichmann1,2,3, Michael P LaValley2, David R Gagnon2,4, Elena Losina1,2
1Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, USA
2Department of Biostatistics, Boston University School of Public Health, Boston, USA
3Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Boston, USA
4Massachusetts Veterans Epidemiology Research and Information Center, VA Cooperative Studies Program, Boston, USA

Tóm tắt

Interaction in clinical trials presents challenges for design and appropriate sample size estimation. Here we considered interaction between treatment assignment and a dichotomous prognostic factor with a continuous outcome. Our objectives were to describe differences in power and sample size requirements across alternative distributions of a prognostic factor and magnitudes of the interaction effect, describe the effect of misspecification of the distribution of the prognostic factor on the power to detect an interaction effect, and discuss and compare three methods of handling the misspecification of the prognostic factor distribution. We examined the impact of the distribution of the dichotomous prognostic factor on power and sample size for the interaction effect using traditional one-stage sample size calculation. We varied the magnitude of the interaction effect, the distribution of the prognostic factor, and the magnitude and direction of the misspecification of the distribution of the prognostic factor. We compared quota sampling, modified quota sampling, and sample size re-estimation using conditional power as three strategies for ensuring adequate power and type I error in the presence of a misspecification of the prognostic factor distribution. The sample size required to detect an interaction effect with 80% power increases as the distribution of the prognostic factor becomes less balanced. Misspecification such that the actual distribution of the prognostic factor was more skewed than planned led to a decrease in power with the greatest loss in power seen as the distribution of the prognostic factor became less balanced. Quota sampling was able to maintain the empirical power at 80% and the empirical type I error at 5%. The performance of the modified quota sampling procedure was related to the percentage of trials switching the quota sampling scheme. Sample size re-estimation using conditional power was able to improve the empirical power under negative misspecifications (i.e. skewed distributions) but it was not able to reach the target of 80% in all situations. Misspecifying the distribution of a dichotomous prognostic factor can greatly impact power to detect an interaction effect. Modified quota sampling and sample size re-estimation using conditional power improve the power when the distribution of the prognostic factor is misspecified. Quota sampling is simple and can prevent misspecification of the prognostic factor, while maintaining power and type I error.

Tài liệu tham khảo

Pocock SJ, Hughes MD, Lee RJ: Statistical problems in the reporting of clinical trials. A survey of three medical journals. N Engl J Med. 1987, 317 (7): 426-432. 10.1056/NEJM198708133170706. Assmann SF, Pocock SJ, Enos LE, Kasten LE: Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000, 355 (9209): 1064-1069. 10.1016/S0140-6736(00)02039-0. Bhandari M, Devereaux PJ, Li P, Mah D, Lim K, Schunemann HJ, Tornetta P: Misuse of baseline comparison tests and subgroup analyses in surgical trials. Clin Orthop Relat Res. 2006, 447: 247-251. Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM: Statistics in medicine–reporting of subgroup analyses in clinical trials. N Engl J Med. 2007, 357 (21): 2189-2194. 10.1056/NEJMsr077003. Lagakos SW: The challenge of subgroup analyses–reporting without distorting. N Engl J Med. 2006, 354 (16): 1667-1669. 10.1056/NEJMp068070. Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G: Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. Health Technol Assess. 2001, 5 (33): 1-56. Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ: Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol. 2004, 57 (3): 229-236. 10.1016/j.jclinepi.2003.08.009. Schulz KF, Altman DG, Moher D, CONSORT: Statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010, 11: 32-10.1186/1745-6215-11-32. Lachenbruch PA: A note on sample size computation for testing interactions. Stat Med. 1988, 7 (4): 467-469. 10.1002/sim.4780070403. Denne JS: Sample size recalculation using conditional power. Stat Med. 2001, 20 (17–18): 2645-2660. O’Brien PC, Fleming TR: A multiple testing procedure for clinical trials. Biometrics. 1979, 35 (3): 549-556. 10.2307/2530245. Chow SC, Chang M: Adaptive design methods in clinical trials. 2007, Boca Raton, FL: Chapman and Hall/CRC Press Food and Drug Administration: Guidance for industry: adaptive design clinical trials for drugs and biologics. http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf, The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2288/13/21/prepub