Tác động của ô nhiễm nước rỉ từ bãi rác đến nước mặt và nước ngầm tại Bangladesh: một đánh giá hệ thống và khả năng rủi ro sức khỏe cộng đồng
Tóm tắt
Việc chôn lấp chất thải rắn tại các bãi rác không được thiết kế đúng quy cách là rất phổ biến ở các nước đang phát triển. Trong số những bất lợi khác nhau của loại hình chôn lấp này, nước rỉ là mối quan tâm chính đối với sức khỏe cộng đồng, là sản phẩm độc hại tạo ra từ bãi rác; và có thể ngấm vào nước ngầm và do đó di chuyển vào nước mặt. Thông qua việc tiến hành đánh giá hệ thống dữ liệu đã công bố, nghiên cứu hiện tại cố gắng so sánh tiềm năng ô nhiễm nước rỉ của bốn bãi rác chính tại Bangladesh, bao gồm Amin Bazar, Matuail, Mogla Bazar và Rowfabad; nằm ở 3 trong số 6 thành phố lớn của Bangladesh và đánh giá tác động của nước rỉ lên các nguồn nước xung quanh cũng như đến sức khỏe con người. Nghiên cứu này, lần đầu tiên tính toán chỉ số ô nhiễm nước rỉ (LPI) cho các địa điểm chôn lấp tại Bangladesh và phát hiện rằng LPI của bãi rác Matuail (19,81) là rất cao, so sánh được với một số bãi rác ô nhiễm ở Ấn Độ và Malaysia. Nồng độ của một số kim loại độc hại tiềm tàng trong nước mặt và nước ngầm xung quanh các bãi rác cao hơn giới hạn tối đa cho phép của Cục Môi trường Bangladesh và Tổ chức Y tế Thế giới (WHO). Chỉ số rủi ro sức khỏe con người đối với các kim loại nặng độc hại trong các loại rau và gạo cho thấy tiềm năng rủi ro sức khỏe cao cho Pb, Cd, Ni và Mn. Rủi ro gây ung thư tổng thể cho Ni và Pb được phát hiện rất cao trong các cây ăn được gần những bãi rác đó, gợi ý về nguy cơ gây ung thư do Ni và Pb thông qua việc tiêu thụ những cây này. Tình trạng hiện tại của nước mặt, nước ngầm và sản phẩm nông nghiệp gần các bãi rác tại Bangladesh là rất đáng lo ngại đối với sinh vật và cư dân địa phương.
Từ khóa
Tài liệu tham khảo
Abedin MA, Jahiruddin M (2015) Waste generation and management in Bangladesh: an overview. Asian J Med Biol Res 1:114–120. https://doi.org/10.3329/ajmbr.v1i1.25507
Afrin S, Uddin MK, Rahman MM (2020) Microplastics contamination in the soil from Urban Landfill site, Dhaka Bangladesh. Heliyon 6:e05572. https://doi.org/10.1016/j.heliyon.2020.e05572
Ahmed MK, Baki MA, Islam MS et al (2015) Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga. Environ Sci Pollut Res, Bangladesh. https://doi.org/10.1007/s11356-015-4813-z
Akpor OB (2014) Heavy Metal Pollutants in Wastewater Effluents: Sources, Effects and Remediation. Adv Biosci Bioeng. https://doi.org/10.11648/j.abb.20140204.11
Alam O, Qiao X (2020) An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh. Sustain, Cities Soc
Alam R, Ahmed Z, Howladar MF (2020) Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet. Groundw Sustain Dev, Bangladesh. https://doi.org/10.1016/j.gsd.2019.100311
Aminul Haque M, Hoque MA, Modal MSA, Tauhid-Ur-Rahman M (2013) Characterization of leachate and solid waste of Dhaka city corporation landfill site for solid waste stabilization. Am J Civ Eng Archit 1:39–42. https://doi.org/10.12691/ajcea-1-2-3
Arunbabu V, Indu KS, Ramasamy EV (2017) Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Manag. https://doi.org/10.1016/j.wasman.2017.07.012
Azim M, Rahman MM, Khan RH, Kamal A (2011) Characteristics Of leachate generated at landfill sites and probable risks of surface and groundwater pollution in the surrounding areas : a case study of matuail landfill Site, Dhaka. J Bangladesh Acad Sci 35:153–160. https://doi.org/10.3329/jbas.v35i2.9418
Aziz HA, Umar M, Yusoff MS (2010) Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. Int J Chem Eng. https://doi.org/10.1155/2010/747953
Baun DL, Christensen TH (2004) Speciation of heavy metals in landfill leachate: a review. Waste Manag Res 22:3–23
BBS (2011) Household income and expenditure survey. Bangladesh Bureau of Statistics, Bangladesh
Bollmann UE, Simon M, Vollertsen J, Bester K (2019) Assessment of input of organic micropollutants and microplastics into the Baltic Sea by urban waters. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2019.07.014
Borquaye LS, Ekuadzi E, Darko G et al (2019) Occurrence of antibiotics and antibiotic-resistant bacteria in landfill sites in Kumasi Ghana. J Chem. https://doi.org/10.1155/2019/6934507
Christensen TH, Kjeldsen P, Bjerg PL et al (2001) Biogeochemistry of landfill leachate plumes. Appl Geochemistry 16:659–718. https://doi.org/10.1016/S0883-2927(00)00082-2
Ding J, Zhang S, Razanajatovo RM et al (2018) Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ Pollut 238:1–9. https://doi.org/10.1016/j.envpol.2018.03.001
DNCC (2016) Dhaka North city coorporation waste report 2016–2017. 1–11. https://dncc.portal.gov.bd/sites/default/files/files/dncc.portal.gov.bd/annual_reports/efedb2ad_8950_461e_960f_d1bfac6d10e3/Waste%20Report%202016-2017.pdf
ECR (1997) The environment conservation rules, 1997. Bangladesh Dep Environ Minist Environ For Gov People’s Repub Bangladesh 179–227
Fadhullah W, Kamaruddin MA, Ismail N et al (2019) Characterization of landfill leachates and its impact to groundwater and river water quality: a case study in beris lalang waste dumpsite, Kelantan. Pertanika J Sci Technol 27:633–646
Fakhri Y, Bjørklund G, Bandpei AM et al (2018) Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: a systematic review and carcinogenic risk assessment. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2018.01.018
Fergusson JE (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press plc, Oxford, UK
da Filho JL, P, Miguel MG, (2017) Long-term characterization of landfill leachate: impacts of the tropical climate on its composition. Am J Environ Sci 13:116–127. https://doi.org/10.3844/ajessp.2017.116.127
Gallen C, Drage D, Eaglesham G et al (2017) Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Mater 331:132–141. https://doi.org/10.1016/j.jhazmat.2017.02.006
Gao J, Oloibiri V, Chys M et al (2015) The present status of landfill leachate treatment and its development trend from a technological point of view. Rev. Environ. Sci. Biotechnol. 14:93–122
Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) CHAPTER 1. Contamination of heavy metals in Aquatic media: transport, toxicity and technologies for remediation. In: Heavy metals in water. pp 1–24. https://doi.org/10.1039/9781782620174-00001
Genchi G, Carocci A, Lauria G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679
Gerba CP, Tamimi AH, Pettigrew C et al (2011) Sources of microbial pathogens in municipal solid waste landfills in the United States of America. Waste Manag Res 29:781–790
Ghosh R, Xalxo R, Ghosh M (2013) estimation of heavy metal in vegetables from different market sites of tribal based ranchi city through ICP-OES and to assess health risk. Curr World Environ J. https://doi.org/10.12944/cwe.8.3.13
He P, Chen L, Shao L et al (2019) Municipal solid waste (MSW) landfill: a source of microplastics? -Evidence of microplastics in landfill leachate. Water Res 159:38–45. https://doi.org/10.1016/j.watres.2019.04.060
Heikens A (2006) Arsenic contamination of irrigation water, soil and crops in Bangladesh: Risk implications for sustainable agriculture and food safety in Asia. FAO - RAP Publ 2006/20. http://www.fao.org/3/ag105e/ag105e00.htm
Hoque MA, Haque MA, Mondal MSA (2014) Seasonal effects on heavy metal concentration in decomposed solid waste of DNCC and DSCC landfill sites. Civ Eng Archit 2:52–56. https://doi.org/10.13189/CEA.2014.020106
Hossain MF, Jahan E, Parveen Z et al (2018) Solid waste disposal and its impact on surrounding environment of matuail landfill site, Dhaka, Bangladesh. Am J Environ Sci 14:234–245. https://doi.org/10.3844/ajessp.2018.234.245
Hossain ML, Das SR, Hossain MK (2014) Impact of landfill leachate on surface and ground water quality. J Environ Sci Technol 7:337–346. https://doi.org/10.3923/jest.2014.337.346
Hossain MM, Alam O (2013) A deeper look into the inner factors associated to healthcare waste management in chittagong - The commercial capital of Bangladesh (March 11, 2016). In: Proceedings Sardinia 2013, Fourteenth International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy
30 Sept - 4 Oct 2013. Available at SSRN: https://ssrn.com/abstract=2746598
Hutton MM (1987) Hutton M (1987) human health concerns of lead, mercury, cadmium and arsenic. Lead, Mercur Cadmium Arsen Environ 31:53–68
Ioannidis TA, Zouboulis AI (2005) Solidification/Stabilization of hazardous solid wastes. In: Lehr JH, Keeley J (eds) Water encyclopedia. https://doi.org/10.1002/047147844X.ww237
Islam KMN (2016) Municipal solid waste to energy generation in bangladesh: possible scenarios to generate renewable electricity in Dhaka and Chittagong City. J Renew Energy. https://doi.org/10.1155/2016/1712370
Iswa (2013) International solid waste association report. https://www.nswai.org/docs/ISWA_Report_2013.pdf
Jahan E, Nessa A, Hossain MF, Parveen Z (2016) Characteristics of municipal landfill leachate and Bangladesh. J Environ Res 29:31–39
Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip, Toxicol
Jan FA, Ishaq M, Khan S et al (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.03.047
Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol 238:201–208
Kamal AKI, Islam MR, Hassan M et al (2016) Bioaccumulation of trace metals in selected plants within amin bazar landfill site, Dhaka, Bangladesh. Environ Process 3:179–194. https://doi.org/10.1007/s40710-016-0123-9
Kaur K, Mor S, Ravindra K (2016) Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. J Colloid Interface Sci 469:338–343. https://doi.org/10.1016/j.jcis.2016.02.025
Khan S, Cao Q, Zheng YM et al (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692. https://doi.org/10.1016/j.envpol.2007.06.056
Khan T (2019) Annual Report 2018–2019, WASA
Kibria G, Hossain MM, Mallick D et al (2016) Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.02.021
Kibria G, Yousuf H, Nugegoda D, Rose G (2010) Climate change and chemicals: environmental and biological aspects. New India Publishing Agency, New Delhi
Kim HS, Kim YJ, Seo YR (2015) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev. https://doi.org/10.15430/jcp.2015.20.4.232
Kjeldsen P, Barlaz MA, Rooker AP et al (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. https://doi.org/10.1080/10643380290813462
Kortei NK, Heymann ME, Essuman EK et al (2020) Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: impact of illegal mining activities on food safety. Toxicol Reports. https://doi.org/10.1016/j.toxrep.2020.02.011
Kumar D, Alappat BJ (2005) Analysis of leachate pollution index and formulation of sub-leachate pollution indices. Waste Manag Res 23:230–239. https://doi.org/10.1177/0734242X05054875
Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore Pakistan. Arab J Chem. https://doi.org/10.1016/j.arabjc.2013.07.002
Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2008.0268
Mishra S, Tiwary D, Ohri A, Agnihotri AK (2019) Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi. India Groundw Sustain Dev 9:100230. https://doi.org/10.1016/j.gsd.2019.100230
Mohammadi AA, Zarei A, Majidi S et al (2019) Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX. https://doi.org/10.1016/j.mex.2019.07.017
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814. https://doi.org/10.1016/j.envint.2008.10.008
Mor S, Negi P, Khaiwal R (2018) Assessment of groundwater pollution by landfills in India using leachate pollution index and estimation of error. Environ Nanotechnol, Monit Manag 10:467–476. https://doi.org/10.1016/j.enmm.2018.09.002
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 8:199–216
Naveen BP, Sumalatha J, Malik RK (2018) A study on contamination of ground and surface water bodies by leachate leakage from a landfill in Bangalore. India Int J Geo-Engineering 9:27. https://doi.org/10.1186/s40703-018-0095-x
O’Neal SL, Zheng W (2015) Manganese toxicity upon overexposure: a decade in review. Curr Environ Heal Reports 2:315–328
Parvin F, Jannat S, Tareq SM (2021) Abundance, characteristics and variation of microplastics in different freshwater fish species from Bangladesh. Sci Total Environ 784:147137. https://doi.org/10.1016/j.scitotenv.2021.147137
Pollard AJ (2016) Heavy metal tolerance and accumulation in plants of the Southeastern United States. Castanea 81:257–269. https://doi.org/10.2179/16-084
Rikta SY, Tareq SM, Uddin MK (2018) Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate. Appl Water Sci 8:1–8. https://doi.org/10.1007/s13201-018-0642-9
Samudro G, Mangkoedihardjo S (2010) Review on Bod, Cod and Bod/Cod Ratio: a triangle zone for toxic, biodegradable and stable levels. Int J Acad Res 2:235–239
Shaheen N, Irfan NM, Khan IN et al (2016) Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438. https://doi.org/10.1016/j.chemosphere.2016.02.060
Sridhara Chary N, Kamala CT, Samuel Suman Raj D (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2007.04.013
Su Y, Zhang Z, Wu D et al (2019) Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res. https://doi.org/10.1016/j.watres.2019.114968
Toufexi E, Tsarpali V, Efthimiou I et al (2013) Environmental and human risk assessment of landfill leachate: an integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.05.054
Urase T, Takemura J, Okumura H et al (2007) Micropollutants in leachate from nonthaburi solid waste disposal Site in Thailand. J Japan Soc Water Environ 30:617–620. https://doi.org/10.2965/jswe.30.617
USEPA (2015) US EPA integrated risk information system (IRIS). United States Environ Prot Agency. https://www.epa.gov/iris/iris-downloads
USEPA (1989) Risk assessment guidance for superfund. Human health evaluation manual part A, Interim Final, EPA/540/1-89/002. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. https://rais.ornl.gov/documents/HHEMA.pdf
Vaccari M, Tudor T, Vinti G (2019) Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: an overview. Waste Manag 95:416–431. https://doi.org/10.1016/j.wasman.2019.06.032
Verma R, Dwivedi P (2017) Heavy metal water pollution-A case study. Recent Res Sci Technol 5(5):98–99
Visvanathan C, Choudhary MK, Montalbo MT, Jegatheesan V (2007) Landfill leachate treatment using thermophilic membrane bioreactor. Desalination 204:8–16. https://doi.org/10.1016/j.desal.2006.02.028
WHO (2012) Guideline for drinking water quality, 4th ed., incorporating the 1st addendum. https://www.who.int/publications/i/item/9789241549950
Xaypanya P, Takemura J, Chiemchaisri C et al (2018) Characterization of landfill leachates and sediments in major cities of Indochina Peninsular Countries—Heavy metal partitioning in municipal solid waste leachate. Environments 5:65. https://doi.org/10.3390/environments5060065
Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. https://doi.org/10.1016/j.procbio.2013.04.012
Yi X, Tran NH, Yin T et al (2017) Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. https://doi.org/10.1016/j.watres.2017.05.008
Youcai Z (2018) Leachate generation and characteristics. In: Pollution control technology for leachate from municipal solid waste, Elsevier. https://doi.org/10.1016/B978-0-12-815813-5.00001-2
Yu X, Sui Q, Lyu S et al (2020) Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China. Environ Int. https://doi.org/10.1016/j.envint.2019.105404