Impact of climate change on weeds in agriculture: a review

Agronomy for Sustainable Development - Tập 34 - Trang 707-721 - 2014
Kristian Peters1, Laura Breitsameter2, Bärbel Gerowitt1
1Faculty of Agricultural and Environmental Sciences, Crop Health, University of Rostock, Rostock, Germany
2Centre of Biodiversity and Sustainable Land Use (CBL), Section Agriculture and the Environment, University of Göttingen, Göttingen, Germany

Tóm tắt

Over the past decades, climate change has induced transformations in the weed flora of arable ecosystems in Europe. For instance, thermophile weeds, late-emerging weeds, and some opportunistic weeds have become more abundant in some cropping systems. The composition of arable weed species is indeed ruled by environmental conditions such as temperature and precipitation. Climate change also influences weeds indirectly by enforcing adaptations of agronomic practice. We therefore need more accurate estimations of the damage potential of arable weeds to develop effective weed control strategies while maintaining crop yield. Here we review the mechanisms of responses of arable weeds to the direct and indirect effects of climate change. Climate change effects are categorized into three distinct types of shifts occurring at different scales: (1) range shifts at the landscape scale, (2) niche shifts at the community scale, and (3) trait shifts of individual species at the population scale. Our main conclusions are changes in the species composition and new species introductions are favored, which facilitate major ecological and agronomical implications. Current research mainly considers processes at the landscape scale. Processes at the population and community scales have prevalent importance to devise sustainable management strategies. Trait-climate and niche-climate relationships warrant closer consideration when modeling the possible future distribution and damage potential of weeds with climate change.

Tài liệu tham khảo

Alberto AMP, Ziska LH, Cervancia CR, Manalo PA (1996) The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens). Aust J Physiol 23:795–802 Andersen RN, Menges RM, Conn JS (1985) Variability in velvetleaf (Abutilon theophrasti) and reproduction beyond its current range in North America. Weed Sci 33:507–512 Anderson RL (2007) Managing weeds with a dualistic approach of prevention and control. A review. Agron Sustain Dev 27:13–18. doi:10.1051/agro:2006027 Andreasen C, Skovgaard IM (2009) Crop and soil factors of importance for the distribution of plant species on arable fields in Denmark. Agric Ecosyst Environ 133:61–67. doi:10.1016/j.agee.2009.05.003 Andreasen C, Streibig JC (2011) Evaluation of changes in weed flora in arable fields of Nordic countries—based on Danish long-term surveys. Weed Res 51:214–226. doi:10.1111/j.1365-3180.2010.00836.x Angert AL, Crozier LG, Rissler LJ et al (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689. doi:10.1111/j.1461-0248.2011.01620.x Auffret AG, Meineri E, Brunn HH et al (2010) Ontogenetic niche shifts in three Vaccinium species on a sub-alpine mountain side. Plant Ecol Divers 3:131–139. doi:10.1080/17550874.2010.498063 Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8. doi:10.1111/j.1365-2699.2010.02416.x Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50. doi:10.1016/j.agee.2005.12.007 Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–168 Barrett SCH (2000) Microevolutionary influences of global changes on plant invasions. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington D. C., pp 115–139 Barrett SCH, Wilson BF (1981) Colonizing ability in the Echinochloa crus-galli complex (barnyard grass). I. Variation in life-history. Can J Bot 59:1844–1860. doi:10.1139/b81-245 Batts GR, Morison JIL, Ellis RH et al (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52. doi:10.1016/S0378-519X(97)80009-8 Bazzaz FA (1996) Plants in changing environments. Cambridge Univ Press. 332 pp Bergmann J, Pompe S, Ohlemüller R et al (2010) The Iberian Peninsula as a potential source for the plant species pool in Germany under projected climate change. Plant Ecol 207:191–201. doi:10.1007/s11258-009-9664-6 Berry PM, O’Hanley JR, Thomson CL et al (2007) MONARCH 3 (modelling natural resource responses to climate change)—technical report. UKCIP Univ, Oxford Bloomfield JP, Williams RJ, Gooddy DC et al (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ 369:163–177. doi:10.1016/j.scitotenv.2006.05.019 Blumenthal DM, Hufbauer RA (2007) Increased plant size in exotic populations: a common-garden test with 14 invasive species. Ecology 88:2758–2765 Booth BD, Swanton CJ (2002) Assembly theory applied to weed communities. Weed Sci 50:2–13. doi:10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2 Box EO (1996) Plant functional types and climate at the global scale. J Veg Sci 7(3):309–320. doi:10.2307/3236274 Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15:1417–1429. doi:10.1007/s10530-012-0380-0 Breitsameter L, Bürger J, Peters K et al (2014) Klimafolgenforschung zu Ackerunkräutern – Daten, Methoden und Anwendungen auf verschiedenen Skalen. Julius-Kühn-Archiv 443:123–132. doi:10.5073/jka.2014.443.014 Brock WA, Carpenter SR, Scheffer M (2008) Regime shifts, environmental signals, uncertainty, and policy choice. In: Norberg J, Cumming GS (eds) Complexity theory for a sustainable future. Columbia University Press, New York, pp 180–206 Broennimann O, Thuiller W, Hughes G et al (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Chang Biol 12:1079–1093. doi:10.1111/j.1365-2486.2006.01157.x Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi:10.1111/j.1461-0248.2007.01060.x Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393. doi:10.1111/j.1365-2435.2007.01289.x Carter DR, Peterson KM (1983) Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 58:188–193 Chapin FSIII, Bret-Harte MS, Hobbie SE, Zhong H (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–358. doi:10.2307/3236278 Chapin FSIII, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241 Chmielewski FM, Müller A, Buns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78. doi:10.1016/S0168-1923(03)00161-8 Cimalova S, Lososova Z (2009) Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition. Plant Ecol 203:45–57. doi:10.1007/s11258-008-9503-1 Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240. doi:10.1111/j.1365-3180.2011.00850.x Clements DR, Weise SF, Swanton CJ (1994) Integrated weed management and weed species diversity. Phytoprotection 75:1–18. doi:10.7202/706048ar Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. PNAS 106:19651–19658. doi:10.1073/pnas.0901650106 Concilio AL, Loik ME, Belnap J (2013) Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin. Glob Chang Biol 19:161–172. doi:10.1111/gcb.12032 Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. doi:10.1038/NCLIMATE1452 Craine JM, Froehle J, Tilman DG et al (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285. doi:10.1034/j.1600-0706.2001.930210.x Daccache A, Keay C, Jones RJA et al (2012) Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J Agric Sci 150:161–177. doi:10.1017/S0021859611000839 Dekker J (2003) Evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit (ed) Weed biology and management. Kluwer Academic Publishers, The Netherlands, pp 65–114 Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122. doi:10.2307/3237229 Diaz S, Cabido M, Zak M et al (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10:651–660. doi:10.2307/3237080 Douglas BJ, Thomas AG, Morrison IN, Maw MG (1985) The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can J Plant Sci 65:669–690. doi:10.4141/cjps85-089 Doxford SW, Freckleton RP (2012) Changes in the large-scale distribution of plants: extinction, colonisation and the effects of climate. J Ecol 100:519–529. doi:10.1111/j.1365-2745.2011.01902.x Drake JA (1990) The mechanics of community assembly and succession. J Theor Biol 147:213–233. doi:10.1016/S0022-5193(05)80053-0 Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:10.1016/S0169-5347(98)01554-7 Dukes JS, Pontius J, Orwig D et al (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res 39:231–248. doi:10.1139/X08-171 Ebeling SK, Welk E, Auge H, Bruelheide H (2008) Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography (Cop) 31:709–719. doi:10.1111/j.1600-0587.2008.05470.x Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London Eriksson O (2013) Species pools in cultural landscapes—niche construction, ecological opportunity and niche shifts. Ecography (Cop) 36:403–413. doi:10.1111/j.1600-0587.2012.07913.x Essl F, Dullinger S, Rabitsch W et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci U S A 108:203–207. doi:10.1073/pnas.1011728108 Estrella N, Sparks TH, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Clim Res 39:235–248. doi:10.3354/cr00818 Fausey JC, Renner KA (1997) Germination, emergence, and growth of giant foxtail (Setaria faberi) and fall panicum (Panicum dichotomiflorum). Weed Sci 45:423–425 Fleming A, Vanclay F (2010) Farmer responses to climate change and sustainable agriculture. A review. Agron Sustain Dev 30:11–19. doi:10.1051/agro/2009028 Fordham DA, Mellin C, Russell BD et al (2013) Population dynamics can be more important than physiological limits for determining range shifts under climate change. Glob Chang Biol 19:3224–3237. doi:10.1111/gcb.12289 Fox MD, Fox BJ (1986) The susceptibility of natural communities to invasion. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Canberra, pp 57–66 Franks SJ, Weis AE (2008) A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. J Evol Biol 21:1321–1334. doi:10.1111/j.1420-9101.2008.01566.x Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France. Agric Ecosyst Environ 128:68–76. doi:10.1016/j.agee.2008.05.003 Fried G, Petit S, Reboud X (2010) A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. Bio Med Central Ecol 10:1–11. doi:10.1186/1472-6785-10-20 Froud-Williams RJ (1996) Weeds and climate change: implications for their ecology and control. Asp Appl Biol 45:187–196 Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20. doi:10.1016/S0167-8809(03)00125-7 Gassó N, Sol D, Pino J et al (2009) Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers Distrib 15:50–58. doi:10.1111/j.1472-4642.2008.00501.x Gillett NP, Arora VK, Zickfeld K et al (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83–87. doi:10.1038/ngeo1047 Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi:10.1086/283244 Grime JP (1997) Climate change and vegetation. In: Crawley M (ed) Blackwell Science, Oxford, p Plant ecology Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. doi:10.1111/j.1654-1103.2006.tb02444.x Grime JP, Hodgson JG (1987) Botanical contributions to contemporary ecological theory. New Phytol 106:283–295. doi:10.1111/j.1469-8137.1987.tb04695.x Guillerm JL, Floch E Le, Maillet J, Boulet C (1990) The invading weeds within the Western Mediterranean Basin. In: di Castri F, Hansen AJ, Debussche M (eds) Monogr Biol 65. Springer, pp 61–84. doi: 10.1007/978-94-009-1876-4_5 Gunton RM, Petit S, Gaba S (2011) Functional traits relating arable weed communities to crop characteristics. J Veg Sci 22:541–550. doi:10.1111/j.1654-1103.2011.01273.x Hanzlik K, Gerowitt B (2012) Occurrence and distribution of important weed species in German winter oilseed rape fields. J Plant Dis Prot 119:107–120 Harlan JR, de Wet JMJ (1965) Some thoughts about weeds. Econ Bot 19:16–24. doi:10.1007/BF02971181 Heikkinen RK, Luoto M, Araujo MB et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777 Hierro JL, Eren Ö, Villarreal D, ss MC (2013) Non-native conditions favor non-native populations of invasive plant: demographic consequences of seed size variation? Oikos 112:583–590. doi:10.1111/j.1600-0706.2012.00022.x Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337. doi:10.1046/j.1523-1739.1992.06030324.x Holzner W, Immonen R (1982) The agrestal weed flora and vegetation of the world. In: Holzner W, Numata M (eds) Biology and ecology of weeds. Dr. W. Junk, The Hague, pp 203–226 Howden SM, Soussana J-F, Tubiello FN et al (2007) Adapting agriculture to climate change. Proc Natl Acad Sci U S A 104:19691–19696. doi:10.1073/pnas.0701890104 Hulme PE (2008) Relative roles of life-form, land use and climate in the recent dynamics of alien plant distributions in the British Isles. Weed Res 49:19–28. doi:10.1111/j.1365-3180.2008.00658.x Hulme PE, Barrett SCH (2013) Integrating trait- and niche-based approaches to assess contemporary evolution in alien plant species. J Ecol 101:68–77. doi:10.1111/1365-2745.12009 Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427. doi:10.1101/SQB.1957.022.01.039 Hyvönen T (2011) Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agric Food Sci 20:183–190 Hyvönen T, Luoto M, Uotila P (2012) Assessment of weed establishment risk in a changing European climate. Agric Food Sci 21:348–360 Ihse M (1995) Swedish agricultural landscapes—patterns and changes during the last 50 years, studied by aerial photos. Landsc Urban Plan 31:21–37. doi:10.1016/0169-2046(94)01033-5 Jauni M, Hyvönen T (2012) Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biol Invasions 14:47–63. doi:10.1007/s10530-011-0058-z Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob Chang Biol 15:837–849. doi:10.1111/j.1365-2486.2008.01690.x Jump AS, Peñuelas J (2005) Running and stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x Jump AS, Peñuelas J, Rico L et al (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Chang Biol 14:637–643. doi:10.1111/j.1365-2486.2007.01521.x Kaukoranta T, Hakala K (2008) Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agric Food Sci 17:165–176 Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–165. doi:10.2307/3235676 Kolarova M, Tyser L, Soukup J (2013) Survey about the weed occurrence on arable land in the Czech Republic. Sci Agric Bohem 44:63–69. doi:10.7160/sab.2013.440210 Kubisch A, Degen T, Hovestadt T, Poethke HJ (2013) Predicting range shifts under global change: the balance between local adaptation and dispersal. Ecography (Cop) 36:873–882. doi:10.1111/j.1600-0587.2012.00062.x Lauer E (1953) Über die Keimtemperaturen von Ackerunkräutern und deren Einfluß auf die Zusammensetzung von Unkrautgesellschaften. Flora 140:551–595 Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350. doi:10.1146/annurev-ecolsys-102209-144628 Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x Lavorel S, Prieur-Richard A-H, Grigulis K (1999) Invasibility and diversity of plant communities: from patterns to processes. Divers Distrib 5:41–49. doi:10.1046/j.1472-4642.1999.00034.x Levin DA (2009) Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytol 183:661–666. doi:10.1111/j.1469-8137.2009.02889.x Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277. doi:10.1146/annurev.ecolsys.27.1.237 Lloret F, Médail F, Brundu G et al (2005) Species attributes and invasion success by alien plants on Mediterranean islands. J Ecol 93:512–520. doi:10.1111/j.1365-2745.2005.00979.x Lobell DB, Burke MB (2008) Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ Res Lett 3:1–8. doi:10.1088/1748-9326/3/3/034007 Lohmeyer W (1954) über die Herkunft einiger nitrophiler Unkräuter Mitteleuropas. Vegetatio 5(6):63–65 Lososova Z, Simonova D (2008) Changes during the 20th century in species composition of synanthropic vegetation in Moravia (Czech Republic). Preslia 80:291–305 Lososova Z, Chytry M, Kühn I et al (2006) Patterns of plant traits in annual vegetation of man-made habitats in Central Europe. Perspect Plant Ecol Evol Syst 8:69–81. doi:10.1016/j.ppees.2006.07.001 Loss SR, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144:92–100. doi:10.1016/j.biocon.2010.11.016 MacArthur RH (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536. doi:10.2307/1929601 MacArthur RH (1970) Species-packing and competitive equilibrium for many species. Theor Popul Biol 1:1–11. doi:10.1016/0040-5809(70)90039-0 Maillet J, Lopez-Garcia C (2000) What criteria are relevant for predicting the invasive capacity of a new agricultural weed? The case of invasive American species in France. Weed Res 40:11–26. doi:10.1046/j.1365-3180.2000.00171.x Maron JL, Elmendorf SC, Vila M (2007) Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution (N Y) 61:1912–1924. doi:10.1111/j.1558-5646.2007.00153.x May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proc Natl Acad Sci U S A 69:1109–1113 McDonald A, Riha S, DiTommaso A, DeDaetano A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140. doi:10.1016/j.agee.2008.12.007 McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. TRENDS Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002 McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999) Disturbance response in vegetation—towards a global perspective on functional traits. J Veg Sci 10:621–630. doi:10.2307/3237077 Mehrtens J, Schulte M, Hurle K (2005) Unkrautflora in Mais - Ergebnisse eines Monitorings in Deutschland. Gesunde Pflanz 57:206–218. doi:10.1007/s10343-005-0097-4 Meissle M, Mouron P, Musa T et al (2010) Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375. doi:10.1111/j.1439-0418.2009.01491.x Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x Milakovic I, Fiedler K, Karrer G (2014) Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res 54:256–264. doi:10.1111/wre.12074 Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313 Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682. doi:10.1046/j.1365-3040.1999.00443.x Mortensen DA, Bastiaans L, Sattin M (2000) The role of ecology in the development of weed management systems: an outlook. Weed Res 49:49–62. doi:10.1046/j.1365-3180.2000.00174.x Navas M-L (2012) Trait-based approaches to unravelling the assembly of weed communities and their impact on agro-ecosystem functioning. Weed Res 52:479–488. doi:10.1111/j.1365-3180.2012.00941.x Neve P, Vila-Aiub M, Roux F (2009) Evolutionary-thinking in agricultural weed management. New Phytol 184:783–793. doi:10.1111/j.1469-8137.2009.03034.x Nogues-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531. doi:10.1111/j.1466-8238.2009.00476.x Novak R, Dancza I, Szentey L, Karaman J (2009) Arable weeds of Hungary. Fifth national weed survey (2007–2008). Minist Agric Rural Dev Hungary 95 Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262. doi:10.1016/S1161-0301(02)00004-7 Otte A (1991) Agro-ökosysteme und Habitatinseln in der Agrarlandschaft. 1. Agroökosysteme. 1.1 Struktur und Dynamik. Veränderungen im Keimungs- und Auflaufverhalten bei Chenopodium ficifolium im Vergleich von 1950 zu 1985-88. Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg R P Biowissenschaftliche Beiträge 46:38–48 Otte A, Bissels S, Waldhardt R (2006) Samen-, Keimungs- und Habitateigenschaften: Welche Parameter erklären Veränderungstendenzen in der Häufigkeit von Ackerwildkräutern in Deutschland? J Plant Dis Prot Sonderheft 20:507–516 Patterson DT (1995) Weeds in a changing climate. Weed Sci 43:685–701 Patterson DT, Flint EP, Beers JL (1984) Effects of CO2 enrichment on competition between a C4 weed and a C3 crop. Weed Sci 32:101–105 Pautasso M, Dehnen-Schmutz K, Holdenrieder O et al (2010) Plant health and global change—some implications for landscape management. Biol Rev 85:729–755. doi:10.1111/j.1469-185X.2010.00123.x Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158. doi:10.1016/j.tree.2007.11.005 Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi:10.1046/j.1466-822X.2003.00042.x Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography (Cop) 27:285–298. doi:10.1111/j.0906-7590.2004.03740.x Peters K, Gerowitt B (2014) Response of the two rare arable weed species Lithospermum arvense and Scandix pecten-veneris to climate change conditions. Plant Ecol 215:1–11. doi:10.1007/s11258-014-0358-3 Peters K, Porembski S, Gerowitt B (2009) Entwicklung, Samenbildung und Biomasseproduktion ausgewählter Problemunkrautarten in Rapshalbzwerghybriden. Gesunde Pflanz 61:101–106. doi:10.1007/s10343-009-0207-9 Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. doi:10.1038/20859 Petit S, Boursault A, Le Guilloux M et al (2011) Weeds in agricultural landscapes. A review. Agron Sustain Dev 31:309–317. doi:10.1051/agro/2010020 Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348. doi:10.1126/science.1215933 Pompe S, Hanspach J, Badeck F et al (2008) Climate and land use change impacts on plant distributions in Germany. Biol Lett 4:564–567. doi:10.1098/rsbl.2008.0231 Pompe S, Berger S, Bergmann J et al (2011) Modellierung der Auswirkungen des Klimawandels auf die Flora und Vegetation in Deutschland. BfN-Skripten 304:1–193 Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198. doi:10.1046/j.1469-8137.2003.00680.x Post E, Forchhammer MC, Stenseth NC, Callaghan TV (2001) The timing of life-history events in a changing climate. Proc R Soc London, Ser B 268:15–23. doi:10.1098/rspb.2000.1324 Potts GR, Ewald JA, Aebischer NJ (2010) Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing on the years 1968–2005. J Appl Ecol 47:215–226. doi:10.1111/j.1365-2664.2009.01742.x Pysek P, Jarosik V, Kropac Z et al (2005) Effects of abiotic factors on species richness and cover in Central European weed communities. Agric Ecosyst Environ 109:1–8. doi:10.1016/j.agee.2005.02.018 Rauber R (1977) Evolution von Unkräutern. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderh 8:37–55 Raunkiaer C (1934) The life forms of plants and statistical plant geography. Oxford Univ Press, Oxford Rejmanek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA (eds) Biological invasions. A global perspective. Wiley, Chichester, pp 369–388 Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi:10.1191/0309133306pp490pr Richardson AD, Keenan TF, Migliavacca M et al (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. doi:10.1016/j.agrformet.2012.09.012 Robinson TMP, Gross KL (2010) The impact of altered precipitation variability on annual weed species. Am J Bot 97:1625–1629. doi:10.3732/ajb.1000125 Rogers HH, Runion GB, Prior SA et al (2008) Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). J Environ Qual 37:395–400. doi:10.2134/jeq2007.0155 Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037 Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 Salonen J, Hyvönen T, Jalli H (2001) Weeds in spring cereals in Finland—a third survey. Agric Food Sci Finl 10:347–364 Salonen J, Hyvönen T, Kaseva J, Jalli H (2013) Impact of changed cropping practices on weed occurrence in spring cereals in Finland—a comparison of surveys in 1997–1999 and 2007–2009. Weed Res 53:110–120. doi:10.1111/wre.12004 Samhouri JF, Levin PS, Ainsworth CH (2010) Identifying thresholds for ecosystem-based management. PLoS One 5:e8907. doi:10.1371/journal.pone.0008907 Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi:10.1038/35098000 Schroeder D, Mueller-Schaerer H, Stinson CSA (1993) A European weed survey in 10 major crop systems to identify targets for biological control. Weed Res 33:449–458. doi:10.1111/j.1365-3180.1993.tb01961.x Schulze E-D, Mooney HA (1994) Biodiversity and ecosystem function. Springer, New York, 531 pp Silc U, Vrbnicanin S, BoziC D et al (2009) Weed vegetation in the north-western Balkans: diversity and species composition. Weed Res 49:602–612. doi:10.1111/j.1365-3180.2009.00726.x Silvertown J (2004) Plant coexistence and the niche. TRENDS Ecol Evol 19:605–611 Singer A, Travis JMJ, Johst K (2013) Interspecific interactions affect species and community responses to climate shifts. Oikos 122:358–366. doi:10.1111/j.1600-0706.2012.20465.x Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography (Cop) 27:366–380. doi:10.1111/j.0906-7590.2004.03823.x Smith RG (2006) Timing of tillage is an important filter on the assembly of weed communities. Weed Sci 54:705–712. doi:10.1614/WS-05-177R1.1 Smith C, van Klinken RD, Seabrook L, McAlpine C (2011) Estimating the influence of land management change on weed invasion potential using expert knowledge. Divers Distrib 1:1–14. doi:10.1111/j.1472-4642.2011.00871.x Stohlgren TJ, Binkley D, Chong GW et al (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46. doi:10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2 Stratonovich P, Storkey J, Semenov MA (2012) A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Glob Chang Biol 18:2071–2080. doi:10.1111/j.1365-2486.2012.02650.x Summers DM, Bryan BA, Crossman ND, Meyer W (2012) Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob Chang Biol 18:2335–2348. doi:10.1111/j.1365-2486.2012.02700.x Sutcliffe OL, Kay QON (2000) Changes in the arable flora of central southern England since the 1960s. Biol Conserv 93:1–8. doi:10.1016/S0006-3207(99)00119-6 Tanaka R, Koike F (2011) Prediction of species composition of plant communities in a rural landscape based on species traits. Ecol Res 26:27–36. doi:10.1007/s11284-010-0749-4 Tokatlidis IS (2013) Adapting maize crop to climate change. Agron Sustain Dev 33:63–79. doi:10.1007/s13593-012-0108-7 Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci 104:19686–19690. doi:10.1073/pnas.0701728104 Tungate KD, Israel DW, Watson DM, Rufty TW (2007) Potential changes in weed competitiveness in an agroecological system with elevated temperatures. Environ Exp Bot 60:42–49. doi:10.1016/j.envexpbot.2006.06.001 Von der Lippe M, Bullock JM, Kowarik I et al (2013) Human-mediated dispersal of seeds by the airflow of vehicles. PLoS One 8:1–10. doi:10.1371/journal.pone.0052733 Walck JL, Hidayati SN, Dixon KW et al (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161. doi:10.1111/j.1365-2486.2010.02368.x Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a Walther G-R, Roques A, Hulme PE et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi:10.1016/j.tree.2009.06.008 Wang R-L, Dekker J (1995) Weedy adaptation in Setaria spp.: III. Variation in herbicide resistance in Setaria spp. Pestic Biochem Physiol 51:99–116. doi:10.1006/pest.1995.1011 Warwick SI, Black LD (1986) Genecological variation in recently established populations of Abutilon theophrasti (velvetleaf). Can J Bot 64:1632–1643. doi:10.1139/b86-219 Webber BL, Le Maitre DC, Kriticos DJ (2012) Comment on climatic niche shifts are rare among terrestrial plant invaders. Science 338:193–194. doi:10.1126/science.1225980 Weber E, Gut D (2005) A survey of weeds that are increasingly spreading in Europe. Agron Sustain Dev 25:109–121. doi:10.1051/agro:2004061 Weiher E, van der Werf A, Thompson K et al (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076 Westerman PR, Diesterheft J, Gerowitt B (2012) Phenology of velvetleaf (Abutilon theophrasti Medic.) populations grown in northern Germany. Julius-Kühn-Archiv 434:595–600. doi:10.5073/jka.2012.434.076 Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. doi:10.1146/annurev.ecolsys.36.102803.095431 Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant-communities. Adv Ecol Res 23:263–336. doi:10.1016/S0065-2504(08)60149-X Woodward FI, Cramer W (1996) Plant functional types and climatic changes: introduction. J Veg Sci 7:306–308. doi:10.1111/j.1654-1103.1996.tb00489.x Zangerl AR, Bazzaz FA (1984) The response of plants to elevated CO2—II. Competitive interactions among annual plants under varying light and nutrients. Oecologia 62:412–417 Ziska LH (1997) Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199–208. doi:10.1023/A:1005947802161 Ziska LH (2003) Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J Exp Bot 54:395–404. doi:10.1093/jxb/erg027 Ziska LH, Teasdale JR, Bunce JA (1999) Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci 47:608–615 Ziska LH, Morris CF, Goins EW (2005) Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Glob Chang Biol 10:1810–1819. doi:10.1111/j.1365-2486.2004.00840.x