Impact of Thermal Radiation on an Unsteady Casson Nanofluid Flow Over a Stretching Surface

S.P. Samrat1, C. Sulochana1, G.P. Ashwinkumar2
1Department of Mathematics, Gulbarga University, Kalaburagi, India
2Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645–647 (1970)

Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet. Can. J. Chem. Eng. 55, 744–746 (1977)

Wang, C.Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

Siddheshwar, P.G., Mahabaleswar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Nonlinear. Mech. 40, 807–820 (2005)

Partha, M.K., Murthy, P.V.S.N., Rajasekhar, G.P.: Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transf. 41, 360–366 (2005)

Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873 (2007)

Abel, M.S., Mahesha, N., Tawade, J.: Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl. Math. Model. 33, 3430–3441 (2009)

Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows, FED-231/MD-66, pp. 99–105 (1995)

Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

Vajravelu, K., Prasad, K.V., Lee, J., Lee, C., Pop, I., Gorder, R.A.: Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface. Int. J. Therm. Sci. 50, 843–851 (2011)

Gireesha, B.J., Manjunatha, S., Bagewadi, C.S.: Unsteady hydromagnetics boundary layer flow and heat transfer of dusty fluid over a stretching sheet. Afrika Mat. 23, 229–241 (2012)

El-aziz, M.A.: Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J. Egypt. Math. Soc. 21, 385–394 (2013)

Abbas, Z., Sheikh, M., Sajid, M.: Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Can. J. Phys. 92, 1113–1123 (2014)

Madhu, M., Kishan, N.: Magnetohydrodynamic mixed convection stagnation-point flow of a power-law non-Newtonian nanofluid towards a stretching surface with radiation and heat source/sink. J. Fluids (2015). https://doi.org/10.1155/2015/634186

Sulochana, C., Sandeep, N.: Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0451-5

Babu, M.J., Sandeep, N.: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv. Powder Technol. 27, 2039–2050 (2016)

Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Eur. Phys. J. Plus 132, 387–400 (2017)

Mahmood, T., Shahzad, A., Iqbal, Z., Ahmed, J., Khan, M.: Computational modelling on 2D magnetohydrodynamic flow of Sisko fluid over a time dependent stretching surface. Results Phys. 7, 832–842 (2017)

Sulochana, C., Samrat, S.P., Sandeep, N.: Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating. Int. J. Mech. Sci. (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.006

Sulochana, C., Samrat, S.P., Sandeep, N.: Magnetohydrodynamic radiative nanofluid flow over a rotating surface with Soret effect. Multidiscip. Model. Mater. Struct. (2017). https://doi.org/10.1108/mmms-05-2017-0042

Sulochana, C., Samrat, S.P., Sandeep, N.: Thermal radiation effect on MHD nanofluid flow over a stretching sheet. Int. J. Eng. Res. Africa 23, 89–102 (2016). https://doi.org/10.4028/www.scientific.net/JERA.23.89

Sulochana, C., Samrat, S.P., Sandeep, N.: Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation. Int. J. Eng. Res. Africa 20, 112–129 (2016). https://doi.org/10.4028/www.scientific.net/JERA.20.112

Pham, T.V., Mitsoulis, E.: Entry and exit flows of Casson fluids. Can. J. Chem. Eng. 72, 1080–1084 (1994)

Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran. 19, 1550–1553 (2012)

Shehzad, S.A., Hayat, T., Qasim, M., Asghar, S.: Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30, 187–195 (2013)

Mukhopadhyay, S., Ranjan, P., Bhattacharyya, K., Layek, G.C.: Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J. 4, 933–938 (2013)

Sharada, K., Shankar, B.: MHD mixed convection flow of a Casson fluid over an exponentially stretching surface with the effects of Soret, Dufour, thermal radiation and chemical reaction. World J. Mech. 5, 165–177 (2015)

Animasaun, I.L., Adebile, E.A., Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35, 1–17 (2015)

Ibrahim, W., Makinde, O.D.: Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J. Aerosp. Eng. 29, 4015037 (2015)

Abbas, Z., Sheikh, M., Motsa, S.S.: Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95, 12–20 (2016). https://doi.org/10.1016/j.energy.2015.11.039

Mahdy, A.: Unsteady MHD slip flow of a non-Newtonian casson fluid due to stretching sheet with suction or blowing effect. J. Appl. Fluid Mech. 9, 785–793 (2016)

Kumaran, G., Sandeep, N.: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion. J. Mol. Liq. 233, 262–269 (2017). https://doi.org/10.1016/j.molliq.2017.03.031

Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: Colloidal study of Casson fluid with homogeneous–heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017). https://doi.org/10.1016/j.jcis.2017.03.024

Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 7, 2134–2152 (2017)

Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non uniform internal heating. J. Nanofluids 6, 136–148 (2017)

Hayat, T., Hussain, Z., Farooq, M., Alsaedi, A.: Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. J. Mol. Liq. 215, 749–755 (2016). https://doi.org/10.1016/j.molliq.2015.12.109

Hayat, T., Hussain, Z., Alsaedi, A., Farooq, M.: Magnetohydrodynamic flow by a stretching cylinder with Newtonian heating and homogeneous–heterogeneous reactions. PLoS ONE 11, 1–23 (2016). https://doi.org/10.1371/journal.pone.0156955

Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. J. Mol. Liq. 220, 49–55 (2016). https://doi.org/10.1016/j.molliq.2016.04.032

Wakif, A., Boulahia, Z., Sehaqui, R.: Analytical and numerical study of the onset of electroconvection in a dielectric nanofluid saturated a rotating Darcy porous medium. Int. J. Adv. Comput. Sci. Appl. 7, 299–311 (2016)

Wakif, Z., Boulahia, M., Zaydan, M., Yadil, N., Sehaqui, R.: The power series method to solve a magneto-convection problem in a Darcy–Brinkman porous medium saturated by an electrically conducting nanofluid layer. Int. J. Innov. Appl. Stud. 14, 1048–1065 (2016)

Boulahia, Z., Wakif, A., Sehaqui, R.: Numerical study of mixed convection of the nanofluids in two-sided lid driven square cavity with a pair of triangular heating cylinders. J. Eng. (2016). https://doi.org/10.1155/2016/8962091

Boulahia, Z., Wakif, A., Chamkha, A.J., Sehaqui, R.: Numerical study of natural and mixed convection in a square cavity filled by a Cu–water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 502 (2017)

Ramzan, M., Farooq, M., Hayat, T., Chung, J.D.: Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J. Mol. Liq. 221, 394–400 (2016). https://doi.org/10.1016/j.molliq.2016.05.091

Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Water–carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224, 65 (2016). https://doi.org/10.1016/j.molliq.2016.10.069

Hayat, T., Naseem, A., Farooq, M., Alsaedi, A.: Unsteady MHD three-dimensional flow with viscous dissipation. Eur. Phys. J. Plus (2013). https://doi.org/10.1140/epjp/i2013-13158-1

Samrat, S.P., Sulochana, C., Ashwinkumar, G.P.: Impact of thermal radiation and chemical reaction on unsteady 2D flow of magnetic-nanofluids over an elongated plate embedded with ferrous nanoparticles. Front. Heat Mass Transf. 10, 1–8 (2018). https://doi.org/10.5098/hmt.10.31

Wakif, A., Boulahia, Z., Sehaqui, R.: A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.01.066

Prasad, P.D., Kiran, R.V.M.S.S., Varma, S.V.K.: Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.04.016