Impact of Properties of Hydrated Silicon Dioxide as Core Material on the Characteristics of Drug-containing Particles Prepared by the 2-step Process Melt Granulation Technology, MALCORE®
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kondo K, Kato M, Niwa T. Solventless-mixing layering using a high shear mixer for preparing drug pellets: a feasibility study using acetaminophen. Adv Powder Technol. 2021;32:3624–34. https://doi.org/10.1016/j.apt.2021.08.016.
Albanez R, Nitz M, Taranto OP. Enteric coating process of diclofenac sodium pellets in a fluid bed coater with a Wurster insert: influence of process variables on coating performance and release profile. Adv Powder Technol. 2013;24:659–66. https://doi.org/10.1016/j.apt.2012.12.003.
Teunou E, Poncelet D. Batch and continuous fluid bed coating – review and state of the art. J Food Eng. 2002;53:325–40. https://doi.org/10.1016/S0260-8774(01)00173-X.
Bandari S, Nyavanandi D, Kallakunta VR, Janga KY, Sarabu S, Butreddy A, et al. Continuous twin screw granulation – an advanced alternative granulation technology for use in the pharmaceutical industry. Int J Pharm. 2020;580: 119215. https://doi.org/10.1016/j.ijpharm.2020.119215.
Yoshihara N, Kimata R, Terukina T, Kanazawa T, Kondo H. Novel preparation approach with a 2-step process for spherical particles with high drug loading and controlled size distribution using melt granulation: MALCORE®. Adv Powder Technol. 2022;33: 103409. https://doi.org/10.1016/j.apt.2021.103409.
Kimura S, Uchida S, Kanada K, Namiki N. Effect of granule properties on rough mouth feel and palatability of orally disintegrating tablets. Int J Pharm. 2015;484:156–62. https://doi.org/10.1016/j.ijpharm.2015.02.023.
Liu Y, Sun Y, Sun J, Zhao N, Sun M, He Z. Preparation and in vitro/in vivo evaluation of sustained-release venlafaxine hydrochloride pellets. Int J Pharm. 2012;426:21–8. https://doi.org/10.1016/j.ijpharm.2011.12.053.
Liu F, Shokrollahi H. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer. Int J Pharm. 2015;485:152–9. https://doi.org/10.1016/j.ijpharm.2015.03.008.
Waterman KC, Sutton SC. A computational model for particle size influence on drug absorption during controlled-release colonic delivery. J Control Release. 2003;86:293–304. https://doi.org/10.1016/S0168-3659(02)00418-2.
Baumgartner A, Planinšek O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur J Pharm Sci. 2021;167: 106015. https://doi.org/10.1016/j.ejps.2021.106015.
Bremmell KE, Prestidge CA. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Dev Ind Pharm. 2019;45:349–58. https://doi.org/10.1080/03639045.2018.1542709.
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34. https://doi.org/10.1002/adma.201104763.
Hate SS, Reutzel-Edens SM, Taylor LS. Influence of drug-silica electrostatic interactions on drug release from mesoporous silica-based oral delivery systems. Mol Pharm. 2020;17:3435–46. https://doi.org/10.1021/acs.molpharmaceut.0c00488.
Mitran RA, Matei C, Berger D, Băjenaru L, Moisescu MG. Controlling drug release from mesoporous silica through an amorphous, nanoconfined 1-tetradecanol layer. Eur J Pharm Biopharm. 2018;127:318–25. https://doi.org/10.1016/j.ejpb.2018.02.020.
Bavnhøj CG, Knopp MM, Madsen CM, Löbmann K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int J Pharm X. 2019;.1:100008. https://doi.org/10.1016/j.ijpx.2019.100008
Chen JF, Ding HM, Wang JX, Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials. 2004;25:723–7. https://doi.org/10.1016/s0142-9612(03)00566-0.
Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108:362–74. https://doi.org/10.1016/j.jconrel.2005.08.017.
Li ZZ, Wen LX, Shao L, Chen JF. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release. 2004;98:245–54. https://doi.org/10.1016/j.jconrel.2004.04.019.
Numpilai T, Muenmee S, Witoon T. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen. Mater Sci Eng C Mater Biol Appl. 2016;59:43–52. https://doi.org/10.1016/j.msec.2015.09.095.
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [IUPAC technical report]. Pure Appl Chem. 2015;87:1051–69. https://doi.org/10.1515/pac-2014-1117.
PubChem® of National Center for Biotechnology Information. Density of stearic acid compound summary, modified 2021;p. 3.2.9. https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid.
Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor Mesopor Mater. 2004;68:105–9. https://doi.org/10.1016/j.micromeso.2003.12.012.
Yang P, Quan Z, Lu L, Huang S, Lin J. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials. 2008;29:692–702. https://doi.org/10.1016/j.biomaterials.2007.10.019.
Aleksić I, Duriš J, Ilić I, IbrićS, Parojčić J, Srčič S. In silico modeling of in situ fluidized bed melt granulation. Int J Pharm. 2014;466:21–30. https://doi.org/10.1016/j.ijpharm.2014.02.045
Kukec S, Hudovornik G, Dreu R, Vrečer F. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes. Drug Dev Ind Pharm. 2014;40:952–9. https://doi.org/10.3109/03639045.2013.791832.