Impact of PermaNet 3.0 on entomological indices in an area of pyrethroid resistant Anopheles gambiae in south-western Nigeria

Parasites and Vectors - Tập 7 - Trang 1-10 - 2014
Samson T Awolola1, Adedapo O Adeogun1,2, Judith B Olojede1, Adedayo O Oduola3, Isaac O Oyewole4, Chioma N Amajoh5
1Molecular Entomology and Vector Control Research Laboratory, Nigerian Institute of Medical Research, Yaba Lagos, Nigeria
2Department of Zoology, University of Ibadan, Ibadan, Nigeria
3Department of Zoology, University of Ilorin, Ilorin, Nigeria
4Department of Biological Sciences, Babcock University, Ilishan Remo, Nigeria
5National Malaria Control Program, Federal Ministry of Health, Abuja, Nigeria

Tóm tắt

PermaNet® 3.0 is an insecticide synergist-combination long-lasting insecticidal net designed to have increased efficacy against malaria vectors with metabolic resistance, even when combined with kdr. The current study reports on the impact of this improved tool on entomological indices in an area with pyrethroid-resistant malaria vectors in Nigeria. Baseline entomological indices across eight villages in Remo North LGA of Ogun State provided the basis for selection of three villages (Ilara, Irolu and Ijesa) for comparing the efficacy of PermaNet® 3.0 (PN3.0), PermaNet® 2.0 (PN2.0) and untreated polyester nets as a control (UTC). In each case, nets were distributed to cover all sleeping spaces and were evaluated for insecticidal activity on a 3-monthly basis. Collection of mosquitoes was conducted monthly via window traps and indoor resting catches. The arithmetic means of mosquito catches per house, entomological inoculation rates before and during the intervention were compared as well as three other outcome parameters: the mean mosquito blood feeding rate, mean mortality and mean parity rates. Anopheles gambiae s.l. was the main malaria vector in the three villages, accounting for >98% of the Anopheles population and found in appreciable numbers for 6–7 months. Deltamethrin, permethrin and lambdacyhalothrin resistance were confirmed at Ilara, Irolu and Ijesa. The kdr mutation was the sole resistance mechanism at Ilara, whereas kdr plus P450-based metabolic mechanisms were detected at Irolu and Ijesa. Bioassays repeated on domestically used PN 2.0 and PN 3.0 showed persistent optimal (100%) bio-efficacy for both net types after the 3rd, 6th, 9th and 12th month following net distribution. The use of PN 3.0 significantly reduced mosquito densities with a ‘mass killing’ effect inside houses. Households with PN 3.0 also showed reduced blood feeding as well as lower mosquito parity and sporozoite rates compared to the PN 2.0 and the UTC villages. A significant reduction in the entomological inoculation rate was detected in both the PN 2.0 village (75%) and PN 3.0 village (97%) post LLIN-distribution and not in the UTC village. The study confirms the efficacy of PN 3.0 in reducing malaria transmission compared to pyrethroid-only LLINs in the presence of malaria vectors with P450-based metabolic- resistance mechanisms.

Tài liệu tham khảo

Curtis CF, Hill N, Kasim SH: Are there effective resistance management strategies for vectors of human disease?. Biol J Linn Soc. 1993, 48: 3-18. Kelly-Hope L, Ranson H, Hemingway J: Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis. 2008, 10.1016/S1473-3099(08)70045-8 Awolola TS, Brooke B, Hunt RH, Coetzee M: Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides in Nigeria. Ann Trop Med Parasitol. 2002, 96: 849-852. Kristan M, Fleischmann H, della Torre A, Stich A, Curtis CF: Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and Anopheles gambiae s.s. malaria vectors in Nigeria and Ghana. Med Vet Entomol. 2003, 17: 326-332. Awolola TS, Oyewole IO, Amajoh CN, Idowu ET, Ajayi MB, Oduola A, Manafa OU, Ibrahim K, Koekemoer LL, Coetzee M: Distribution of the molecular M and S form of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Trop. 2005, 95: 204-249. Oduola AO, Obansa JB, Ashiegbu CO, Adeogun AO, Otubanjo OA, Awolola TS: High level of DDT resistance in the malaria mosquito: Anopheles gambiae s.l. from rural, semi urban and urban communities in Nigeria. J R Trop Pub Health. 2010, 9: 114-120. Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J: Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics. 2008, 13: 538- Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H: Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans Roy Soc Trop Med Hyg. 2009, 103: 1139-1145. World Health Organization: Global plan for insecticide resistance management (GPIRM) in malaria vectors. WHO Global Malaria Program. 2012, Geneva, Switzerland: WHO/RBM World Health Organization: Report of the 12th WHOPES Working Group meeting–Review of Bioflash® GR, Permanet® 2.0, Permanet® 3.0, Permanet® 2.5, Lambda-cyhalothrin LN. 2008, 8-11. World Health Organization, WHO/HTM/NTD/WHOPES/2009.1 World Health Organization: Report of the fifteenth WHOPES working group meeting: WHO/HQ, Geneva, 18-22 June 2012: review of Olyset plus, Interceptor LN, Malathion 440EW,Vectobac GR. Geneva, Switzerland: Pesticide Evaluation Scheme, Working Group. Meeting 2012 Adeogun AO, Olojede JB, Oduola AO, Awolola TS: Village-scale evaluation of PermaNet 3.0: an enhanced efficacy combination long-lasting insecticidal net against resistant populations of Anopheles gambiae s.s. Mal Chem Cont Elimination. 2012, 235543-9 pages doi:10.4303/mcce/235543 Oboli HON, Harrison RJ: An outline geography of West Africa. 1961, London: George G.Harrap Publishing, forth Oyewole IO, Ibidapo AC, Oduola AO, Obansa JB, Awolola TS: Molecular identification and population dynamics of the major malaria vectors in a rainforest zone of Nigeria. Biokemistri. 2005, 17: 171-178. Gillies MT, De Meillon B: The anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Pub S Afr Inst Med Res. 1968, 54: 343pp- Gillies MT, Coetzee M: A supplement to the anophelinae of Africa, South of the Sahara (Afrotropical Region). Pub S Afr Inst Med Res. 1987, 55: 143- World Health Organization: Test procedures for insecticide resistance, bioefficacy and persistence of insecticides on treated surfaces. Report of WHO Informal Consultation 1998: WHO/CDS/CPC/MAL/98.12. 1998 Scott JA, Brogon WG, Collins FH: Identification of single specimen of the Anopheles gambiae complex by polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knock down resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998, 71: 79-184. Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Temu EA, Taylor ME, Small G, Hemingway J, Coetzee M: Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus. Bull Entomol Res. 2001, 91: 265-272. Brogdon WG, McAllister JC: Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J Am Mosq Control Assoc. 1998, 14: 159-166. Vulule JM: Elevated oxydase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin impregnated net. Med Vet Entomol. 1999, 13: 239-244. World Health Organization: Guidelines for laboratory and field testing of long-lasting insecticidal treated nets. 2005, Geneva: World Health Organization, WHO/CDS/WHOPES/GCDPP/2005.11 Service MW: A critical review of procedures for sampling populations of adult mosquitoes. Bull Ent Res. 1977, 67: 343-382. Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, Koech DK: Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol. 1988, 25: 9-16. Burkot TR, Williams JL, Schneider I: Identification of Plasmodium falciparum infected mosqyitoes by a double antibody enzyme-linked immunorsobent assay. Am J Trop Med Hyg. 1984, 33: 783-788. Williams CB: The use of logarithms in the interpretation of certain entomological problems. Ann Appl Biol. 1937, 24: 404-414. Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter J, Swalm C, Keating J, Regens JL, Shililu JI: Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg. 2003, 68: 734-742. Onori E, Grab B: Indicators for the forcasting of malaria epidemics. Bull WHO. 1980, 58: 91-98. Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, Sidick I, Zogo B, Lacroix MN, Yadav R, Pigeon O, Corbel V: Efficacy of Olyset Plus, a new long lasting insecticidal net incorporating permethrin and piperonil-butoxide against multi- resistant malaria vectors. PLoS One. 2013, 8 (10): e75134-10.1371/ journal. pone.0075134 Corbel V, Chabi J, Dabire R, Etang J, Nwane P, Pigeon O, Akogbeto M, Hougard JM: Field efficacy of a new mosaic long lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa. Malar J. 2010, 9: 113- Tungu P, Magesa S, Maxwell C, Malima R, Masue D, Sudi W, Miamba J, Pigeon O, Rowland M: Evaluation of PermaNet® 3.0 a deltamethrin–PBO combination net Against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania. Malar J. 2010, 9: 21- Koudou BG, Koffi AA, Malone D, Hemingway J: Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d’Ivoire. Malar J. 2011, 10: 172- N’Guessan R, Corbel V, Akogbéto M, Rowland M: Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, benin. Emerg Infect Dis. 2007, 13: 199-206.