Impact of Ocean–Atmosphere Coupling on the Simulation of a Monsoon Depression Over the Bay of Bengal
Tóm tắt
In this study, we aimed to analyze the role of air–sea coupling with one-dimensional (1D) and 3D ocean coupled models in simulating the monsoon depression (MD) that formed over the Bay of Bengal from 13 to 17 August 2018. This synoptic system produced substantial heavy rainfall amounts over the east and west coasts of India, which led to a flooding situation along its path. In view of its characteristic features, we considered this MD as an ideal case and conducted six numerical simulations. The first three experiments were initialized by GFS data using a stand-alone Weather Research and Forecasting model (WRFCNTRL) coupled with its 1D ocean mixed layer (OML) model (OMLCNTRL) and 3D Price–Weller–Pinkel (PWP) ocean model (PWPCNTRL). The other three experiments (WRF3DVAR, OML3DVAR, and PWP3DVAR) were conducted with the same set of models by assimilating all available observations using the 3D variational data assimilation (3DVAR) method. The evaluation of results of coupled model simulations with observed estimates clearly suggested that the WRF model enabling ocean surface feedback has a positive impact on the simulation of MD and associated heavy rainfall. These improvements were mainly seen in the simulated tracks of the coupled model experiment, which were found to be in the order of 23–29% and 31–38% with OMLCNTRL and PWPCNTRL, respectively, as compared with WRFCNTRL at 48–72 forecast hours. The improvements were significant with the ocean coupled models and assimilation of observations, suggesting an overall reduction in the track error of about 13–17%, 27–32%, and 37–44% with WRF3DVAR, OML3DVAR, and PWP3DVAR, respectively, as compared with WRFCNTRL at 48–72 forecast hours. The positive impact of observational assimilation and ocean coupling could be due to the improved simulation of the depression-induced ocean surface variations, enhanced sea surface cooling, and increased surface enthalpy flux, leading to the changes in dynamical fields and the moisture convergence process. Our analysis suggests that the WRF-PWP model with assimilation of available observations provides improved estimates of the track and intensity of the MD over the Bay of Bengal and its associated heavy rainfall.
Tài liệu tham khảo
Attada, R., Yadav, R. K., Kunchala, R. K., Dasari, H. P., Knio, O., & Hoteit, I. (2018). Prominent mode of summer surface air temperature variability and associated circulation anomalies over the Arabian Peninsula. Atmospheric Science Letters. https://doi.org/10.1002/asl.860
Balaguru, K., Chang, P., Saravanan, R., Leung, L. R., Xu, Z., Li, M., & Hsieh, J.-S. (2012). Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences, 109(36), 14343–14347. https://doi.org/10.1073/pnas.1201364109
Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., & Xiao, Q. N. (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Boston: American Meteorological Society.
Briegel, L. M., & Frank, W. M. (1997). Large-scale influences on tropical cyclogenesis in the western North Pacific. Monthly Weather Review, 125(7), 1397–1413. https://doi.org/10.1175/1520-0493(1997)125%3c1397:lsiotc%3e2.0.co;2
Chandrasekar, C. B. (2015). Impact of physics parameterization and 3DVAR data assimilation on prediction of tropical cyclones in the Bay of Bengal region. Natural Hazards. https://doi.org/10.1007/s11069-015-1966-5
Chaudhuri, S., & Bhowmick, S. (2006). CAPE—a link amid thermodynamics and microphysics for the occurrence of severe thunderstorms. Mausam, 57, 249–254. 551.515.4:551.576.
Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., & Khadka, N. (2021). Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2020.105365
Diaz, M., & Boos, W. R. (2019). Barotropic growth of monsoon depressions. QJRMS. https://doi.org/10.1002/qj.3467
Gilmore, M. S., & Straka, J. M. (2004). Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Monthly Weather Review, 132, 1897–1916.
Godbole, R. V. (1977). The composite structure of the monsoon depression. Tellus, 29(1), 25–40. https://doi.org/10.3402/tellusa.v29i1.11327
Govindankutty, M., & Chandrasekar, A. (2010). Effect of 3DVAR assimilation of MODIS temperature and humidity profiles on the dynamic and thermodynamic features of three monsoon depressions over the Bay of Bengal. Meteorology and Atmospheric Physics, 107, 65–79. https://doi.org/10.1007/s00703-010-0069-9
Gray, W. M., & Jacobson, R. W. (1977). Diurnal variation of deep cumulus convection. Monthly Weather Review, 105(9), 1171–1188. https://doi.org/10.1175/15200493(1977)105%3c1171:dvodcc%3e2.0.co;2
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., & Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3803
Hunt, K. M. R., Turner, A. G., Inness, P. M., Parker, D. E., & Levine, R. C. (2016). On the Structure and Dynamics of Indian Monsoon Depressions. Monthly Weather Review, 144(9), 3391–3416.
Ide, K., Courtier, P., Ghil, M., & Lorenc, A. C. (1997). Unified notation for data assimilation: Operational, sequential and variational (gt Special Issue on Data Assimilation in Meteorology and Oceanography: Theory and Practice). Journal of the Meteorological Society of Japan Series II, 75(1), 181–189. https://doi.org/10.2151/jmsj1965.75.1b_181
Joseph, P. V., Sabin, T. P., et al. (2008). An ocean–atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon. Climate Dynamics, 30, 553–566. https://doi.org/10.1007/s00382-007-0305-2
Kain, J. S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43(1), 170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:tkcpau%3e2.0.co;2
Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Rapid MPPT for uniformly and partial shaded PV system by using Jaya DE algorithm in highly fluctuating atmospheric conditions. IEEE Transactions on Industrial Informatics, 13, 2406–2416. https://doi.org/10.1109/TII.2017.2700327
Kumari, V. K., Karuna Sagar, S., Viswanadhapalli, Y., Dasari, H. P., & Vijaya Bhaskaro Rao, S. (2019). Role of planetary boundary layer processes in the simulation of tropical cyclones over the Bay of Bengal. Pure and Applied Geophysics, 176, 951–977. https://doi.org/10.1007/s00024-018-2017-4
Levine, R. C., Klingaman, N. P., Peatman, C. S., Gill, M., & Martin, M. G. (2021). Roles of air–sea coupling and horizontal resolution in the climate model simulation of Indian monsoon low pressure systems. Climate Dynamics, 2021(56), 1203–1226. https://doi.org/10.1007/s00382-020-05526-6
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of super typhoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133, 2635–2649.
Mitra, A. K., & Krishnamurti, T. N. (2013). Gridded daily Indian monsoon rainfall for 14 seasons: Merged TRMM and IMD gauge analyzed values. Journal of Earth System Science, 122(5), 1173–1182.
Mohan, R., Srinivas, C. V., Yesubabu, V., Baskarana, R., & Venkatramana, B. (2018). Simulation of a heavy rainfall event over Chennai in Southeast India using WRF: Sensitivity to microphysics parameterization. Atmospheric Research, 210, 83–99. https://doi.org/10.1016/j.atmosres.2018.04.005
Nellipudi, N. R., Viswanadhapalli, Y., Challa, V. S., Vissa, N. K., & Langodan, S. (2021). Impact of surface roughness parameterizations on tropical cyclone simulations over the Bay of Bengal using WRF-OML model. Atmospheric Research, 262, 105779. https://doi.org/10.1016/j.atmosres.2021.105779
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., & Xia, Y. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research. https://doi.org/10.1029/2010jd015139
Podeti, S. R., Ramakrishna, S. S. V. S., Viswanadhapalli, Y., Dasari, H., Nellipudi, N. R., & Rao, B. R. S. (2020). Sensitivity of cloud microphysics on the simulation of a monsoon depression over the Bay of Bengal. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-020-02557-2
Pollard, R. T., Rhines, P. B., & Thompson, R. O. R. Y. (1973). The deepening of the wind-mixed layer. Geophysics Fluid Dynamics, 3, 381–404.
Prathipati, V. K., Yesubabu, V., Chennu, C. N., & Dasari, H. P. (2021). Study of active and break spell phenomena of Indian summer monsoon using WRF downscaled data. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-021-02837
Price, C., & Rind, D. (1994). Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research, 99(D5), 10823. https://doi.org/10.1029/94jd00019
Price, J. E. (1981). Upper Ocean response to a hurricane. Journal of Physical Oceanography, 11, 153–175. https://doi.org/10.1175/1520-0485(1981)011%3c0153:UORTAH%3e2.0.CO;2
Price, P. W., & Clancy, K. M. (1986). Interactions among three trophic levels: Gall size and Parasitoid Attack. Ecology, 67(6), 1593–1600. https://doi.org/10.2307/1939090
Pu, Z.-X., & Braun, S. A. (2001). Evaluation of Bogus vortex techniques with four-dimensional variational data assimilation. Monthly Weather Review, 129(8), 2023–2039. https://doi.org/10.1175/1520-0493129%3c2023:eobvtw%3e2.0.co;2
Pu, Z., Li, X., & Sun, J. (2009). Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of hurricane Dennis near a landfall. Journal of the Atmospheric Sciences, 66(11), 3351–3365. https://doi.org/10.1175/2009jas3121.1
Ramakrishna, S. S. V. S., Brahmananda Rao, V., SrinivasaRao, B. R., Hari Prasad, D., NanajiRao, N., & Panda, R. (2017). A study of 2014 record drought in India with CFSv2 model: Role of water vapor transport. Climate Dynamics, 49(1–2), 297–312. https://doi.org/10.1007/s00382-016-3343-9
Ramakrishna, S. S. V. S., Rao, N. N., Rao, B. R. S., Rao, P. S., Srinivas, C. V., & Dasari, H. P. (2019). Impact of moisture transport and Boundary layer processes on a Very Severe Cyclonic Storm using WRF model. Pure and Applied Geophysics, 176, 5445–5461. https://doi.org/10.1007/s00024-02279-0
Ramakrishna, S. S. V. S., Srinivas, C. V., Sravani, A., Rao, N. N., Rao, V. L., & Saradhi, N. V. (2014). Simulation of Pre monsoon Cyclones of two contrasting Monsoon years using Meso scale model WRF (ARW). Montoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change, 319–336. Dordrecht: Springer.
Rao, N. N., Rao, V. B., Ramakrishna, S. S. V. S., & Srinivasa Rao, B. R. (2018). Moisture Budget of the Tropical Cyclones formed over the Bay of Bengal: Role of soil moisture after landfall, Pure Appl. Geophys., 176, 441–461. https://doi.org/10.1007/s00024-018-1964-0
Routray, A., Mohanty, U. C., Osuri, K. K., & S. Kiran Prasad.K.K. (2013). Improvement of monsoon depressions forecast with assimilation of Indian DWR data using WRF-3DVAR analysis system. Pure and Applied Geophysics, 170(2013), 2329–2350. https://doi.org/10.1007/s00024-013-0648-z
Saha, K., & Chang, C.-P. (1983). The Baroclinic processes of monsoon depressions. Monthly Weather Review, 111(7), 1506–1514.
Sengupta, D., Goswami, B. N., & Senan, R. (2001). Coherent intra seasonal oscillations of ocean and atmosphere during the Asian Summer Monsoon. Geophysical Research Letters, 28(21), 4127–4130. https://doi.org/10.1029/2001gl013587
Singh, K. S., Alam, P., Albert, J., & Bhaskaran, P. K. (2020). Numerical simulation of an extremely severe cyclonic storm Hudhud over the North Indian Ocean in a medium range scale: Influence of cloud microphysical schemes. Pure and Applied Geophysics, 177(12), 5895–5910. https://doi.org/10.1007/s00024-020-02596-9
Singh, K. S., Bonthu, S., Purvaja, R., Robin, R. S., Kannan, B. A. M., & Ramesh, R. (2018). Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu: Impact of microphysical parameterization schemes. Atmospheric Research, 202, 219–234. https://doi.org/10.1016/j.atmosres.2017.11.028
Sinha, P. K., & Chandrasekar, A. (2010). Improvement of mesoscale forecasts of monsoon depressions through assimilation of QuikSCAT wind data: Two case studies over India. The Open Atmospheric Science Journal, 4, 160–177.
Song, Q., & Neill, L. W. (2009). Coupling between sea surface temperature and low-level winds in mesoscale numerical models. Journal of Climate, 22(1), 146–164. https://doi.org/10.1175/2008jcli2488.1
Sørland, S. L., & Sorteberg, A. (2015). The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus a: Dynamic Meteorology and Oceanography, 67(1), 27039. https://doi.org/10.3402/tellusa.v67.27039
Srikanth, K., Harvey, S., & Peterson, R. (2016). A dynamic perspective on diverse teams: Moving from the dual-process model to a dynamic coordination-based model of diverse team performance. Academy of Management Annals, 10(1), 453–493. https://doi.org/10.5465/19416520.2016.1120973
Srinivas, C. V., BhaskarRao, D. V., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2013). Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Quarterly Journal Royal Meteorological Society, 139, 1810–1825. https://doi.org/10.1002/qj.2064
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., & Venkatraman, B. (2016). Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW. Journal of Geophysical Research: Atmospheres, 121(16), 9400–9421. https://doi.org/10.1002/2015jd024431
Srinivas, C. V., Rakesh, P. T., & Baskaran, R. (2017). Source term assessment using inverse modeling and environmental radiation measurements for nuclear emergency response. Air Quality, Atmosphere and Health, 10, 1077–1087. https://doi.org/10.1007/s11869-017-0495-7
Strong, G. S., Proctor, B., Wang, M., Soulis, E. D., Smith, C. D., Seglenieks, F., & Snelgrove, K. (2002). Closing the Mackenzie Basin water budget, water years 1994/95 to 1996/97. Atmosphere-Ocean, 40(2), 113–124.
Sushil Kumar, A., Routray, C. R., & Panda, J. (2014). Impact of parameterization schemes and 3DVAR data assimilation for simulation of heavy rainfall events along west coast of India with WRF modeling system. International Journal of Earth and Atmospheric Science, 1(1), 18–34.
Thomas, B., Viswanadhapalli, Y., Srinivas, C. V., Dasari, H. P., Attada, R., & Langodan, S. (2021). Cloud resolving simulation of extremely heavy rainfall event over Kerala in August 2018—Sensitivity to microphysics and aerosol feedback. Atmospheric Research, 258(105613), 1–20. https://doi.org/10.1016/j.atmosres.2021.105613
Trenberth, K. E., & Fasullo, J. (2007). Water and energy budgets of hurricanes and implications for climate change. Journal of Geophysical Research. https://doi.org/10.1029/2006jd008304
Vinayachandran, P. N., Sadhuram, Y., & Babu, V. R. (1989). Latent and sensible heat fluxes under active and weak phases of the summer monsoon of 1986. Proceeding Indian Academy Science (earth Planet Science), 98, 213–222. https://doi.org/10.1007/BF02863246
Vissa, N. K., Satyanarayana, A. N. V., & Kumar, B. P. (2013). Comparison of mixed layer depth and barrier layer thickness for the Indian Ocean using two different climatologies. International Journal of Climatology, 33(13), 2855–2870.
Viswanadhapalli, Y., Dasari, H. P., Dwivedi, S., Madineni, V. R., Langodan, S., & Hoteit, I. (2020). (2020) Variability of monsoon low-level jet and associated rainfall over India. International Journal of Climatology, 40, 1067–1089. https://doi.org/10.1002/joc.6256
Viswanadhapalli, Y., Srinivas, C. V., Basha, G., Dasari, H. P., Langodan, S., Madineni, V. R., & Hoteit, I. (2019). A diagnostic study of extreme precipitation over Kerala during August 2018. Atmospheric Science Letters. https://doi.org/10.1002/asl.941
Yesubabu, V., Islam, S., Sikka, D. R., Kaginalkar, A., Kashid, S., & Srivastava, A. K. (2014). Impact of variational assimilation technique on simulation of a heavy rainfall event over Pune, India. Natural Hazards, 71, 639–658. https://doi.org/10.1007/s11069-013-0933-2
Yesubabu, V., Kattamanchi, V. K., Vissa, N. K., Dasari, H. P., & Sarangam, V. B. R. (2020). Impact of ocean mixed-layer depth initialization on the simulation of tropical cyclones over the Bay of Bengal using the WRF-ARW model. Meteorological Applications, 27, e1862. https://doi.org/10.1002/met.1862
Yesubabu, V., Srinivas, C. V., Hariprasad, K. B. R. R., & Baskaran, R. (2014). A study on the impact of observation assimilation on the numerical simulation of tropical cyclones JAL and THANE using 3DVAR. Pure and Applied Geophysics, 171(8), 2023–2042.
Zhang, X., Chen, J., Tan, M., & Sun, Y. (2007). Assessing the impact of urban sprawl on soil resources of Nanjing city using satellite images and digital soil databases. CATENA, 9(1), 16–30. https://doi.org/10.1016/j.catena.2006.04.020