Tác động của Axit hóa đại dương lên quá trình chuyển hóa năng lượng của ngao, Crassostrea gigas—Thay đổi trong các con đường chuyển hóa và phản ứng nhiệt

Marine Drugs - Tập 8 Số 8 - Trang 2318-2339
Gisela Lannig1, Silke Eilers1, Hans‐Otto Pörtner1, Inna M. Sokolova2, Christian Bock1
1Alfred Wegener Institute for Polar and Marine Research in the Hermann von Helmholtz Association of National Research Centres e. V. (HGF); Am Handelshafen 12; 27570; Bremerhaven; Germany
2Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA

Tóm tắt

Biến đổi khí hậu với sự gia tăng nhiệt độ và axit hóa đại dương (OA) đang đặt ra những rủi ro cho các hệ sinh thái biển. Theo Pörtner và Farrell [1], các hiệu ứng tương tác giữa nhiệt độ cao và OA do CO2 gây ra lên chuyển hóa năng lượng sẽ thu hẹp cửa sổ dung sai nhiệt của các loài động vật ectotherm biển. Để kiểm tra giả thuyết này, chúng tôi đã nghiên cứu tác động của sự gia tăng nhiệt độ cấp tính lên quá trình chuyển hóa năng lượng của ngao, Crassostrea gigas, được phơi nhiễm mạn tính với nồng độ CO2 cao (áp suất riêng phần CO2 trong nước biển ~0.15 kPa, pH nước biển ~ 7.7). Trong vòng một tháng ủ ở mức PCO2 cao và 15 °C, pH huyết thanh giảm xuống (pHe = 7.1 ± 0.2 (nhóm CO2) so với 7.6 ± 0.1 (đối chứng)) và giá trị PeCO2 trong huyết thanh tăng (0.5 ± 0.2 kPa (nhóm CO2) so với 0.2 ± 0.04 kPa (đối chứng)). Nồng độ bicarbonate slightly nhưng có ý nghĩa gia tăng trong huyết thanh của ngao được ủ với CO2 ([HCO-3]e = 1.8 ± 0.3 mM (nhóm CO2) so với 1.3 ± 0.1 mM (đối chứng)) cho thấy chỉ có sự điều chỉnh tối thiểu về trạng thái acid-base ngoại bào. Ở nhiệt độ thích nghi 15 °C, sự giảm pHe do OA không dẫn đến sự suy giảm chuyển hóa ở ngao, vì tỷ lệ chuyển hóa tiêu chuẩn (SMR) của ngao tiếp xúc với CO2 tương tự như ở nhóm đối chứng. Khi nhiệt độ tăng lên cấp tính, SMR tăng ở cả hai nhóm, nhưng hiển thị sự gia tăng mạnh mẽ hơn ở nhóm ủ CO2. Nghiên cứu trên các tế bào mang tách rời cho thấy sự phụ thuộc nhiệt độ tương tự về hô hấp giữa các nhóm. Hơn nữa, phần năng lượng tế bào cho nhu cầu điều chỉnh ion thông qua Na+/K+-ATPase không bị ảnh hưởng bởi tình trạng hypercapnia mạn tính hoặc nhiệt độ. Phân tích chuyển hóa bằng phương pháp phổ 1H-NMR cho thấy những thay đổi đáng kể trong một số mô sau khi tiếp xúc với OA ở 15 °C. Trong mô áo, mức độ alanine và ATP giảm đáng kể trong khi sự gia tăng mức độ succinate được quan sát thấy trong mô mang. Những phát hiện này gợi ý về sự thay đổi trong các con đường chuyển hóa sau khi tiếp xúc với OA. Nghiên cứu của chúng tôi xác nhận rằng OA ảnh hưởng đến quá trình chuyển hóa năng lượng ở ngao và gợi ý rằng biến đổi khí hậu có thể ảnh hưởng đến quần thể của các động vật không xương sống ven biển cố định như thân mềm.

Từ khóa


Tài liệu tham khảo

Farrell, 2008, Physiology and climate change, Science, 322, 690, 10.1126/science.1163156

Fabry, 2008, Marine calcifiers in a high-CO2 ocean, Science, 320, 1020, 10.1126/science.1157130

Melzner, 2009, Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater Pco2, Aquat. Toxicol, 92, 30, 10.1016/j.aquatox.2008.12.011

2010, Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems, J. Exp. Biol, 213, 881, 10.1242/jeb.037523

Savitz, 2008, The oceans’ acid test: can our reefs be saved?, Front. Ecol. Environ, 6, 515, 10.1890/1540-9295-6.10.515

(2005). Ocean acidification due to increasing atmospheric carbon dioxide, The Royal Society. Policy Document 12/05.

Kleypas, JA, Feely, RA, Fabry, VJ, Langdon, C, Sabine, CL, and Robbins, LL Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. St Petersburg, FL, USA.

Martin, 2008, Volcanic carbon dioxide vents show ecosystem effects of ocean acidification, Nature, 454, 96, 10.1038/nature07051

Fabry, 2008, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci, 65, 414, 10.1093/icesjms/fsn048

Andersson, 2008, Life on the margin: Implications of ocean acidification on Mg-calcite, high latitude and cold water marine calcifiers, Mar. Ecol. Prog. Ser, 373, 265, 10.3354/meps07639

Reid, 2009, Impacts of the Oceans on Climate Change, Adv. Mar. Biol, 56, 1, 10.1016/S0065-2881(09)56001-4

Riebesell, 2000, Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364, 10.1038/35030078

Caldeira, 2003, Oceanography: anthropogenic carbon and ocean pH, Nature, 425, 365, 10.1038/425365a

Caldeira, 2005, Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res, 110, C09S04, 10.1029/2004JC002671

Langenbuch, 2004, Biological impact of elevated CO2 concentrations: lessons from animal physiology and earth history, J. Ozenogr, 60, 705

Ishimatsu, 2004, Effects of CO2 on marine fish: larvae and adults, J. Oceanogr, 60, 731, 10.1007/s10872-004-5765-y

Ishimatsu, A, Hayashi, M, Lee, KS, Kikkawa, T, and Kita, J (2005). Physiological effects on fishes in a high-CO2 world. J. Geophys. Res, 110.

Schubert, R, Schellnhuber, HJ, Buchmann, N, Epiney, A, Grieshammer, R, Kulessa, M, Messner, D, Rahmstorf, S, and Schmid, J (2006). Die Zukunft der Meere – zu warm, zu hoch, zu sauer, Sondergutachten des WBGU.

Green, 2009, Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves, Limnol. Oceanogr, 54, 1037, 10.4319/lo.2009.54.4.1037

Munday, 2009, Ocean acidification impairs olfactory discrimination and homing ability of a marine fish, Proc. Natl. Acad. Sci, 10, 1848, 10.1073/pnas.0809996106

Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignor, M, and Miller, HL (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Guppy, 1999, Metabolic depression in animals: physiological perspectives and biochemical generalizations, Biol. Rev, 74, 1, 10.1111/j.1469-185X.1999.tb00180.x

2006b, Climate-dependent evolution of Antarctic ectotherms: an integrative analysis, Deep-Sea Res. II, 53, 1071

Sommer, 1997, Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina, J. Comp. Physiol. B, 16, 725

Tesch, 1999, Physiological disturbances at critically high temperatures. A comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae), J. Exp. Biol, 202, 3611, 10.1242/jeb.202.24.3611

Abele, 2004, Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish, Comp. Physiol. Ecol. Part A, 138, 405

Lannig, 2004, Oxygen limitation of thermal tolerance in cod, Gadus morhua L. studied by magnetic resonance imaging and on-line venous oxygen monitoring, Am. J. Physiol, 287, R902

Wittmann, 2008, Indicators of oxygen- and capacity limited thermal tolerance in the lugworm Arenicola marina, Clim. Res, 37, 227, 10.3354/cr00763

Richards, 2009, Oxygen and Capacity limited Thermal Tolerance, Fish Physiology: Hypoxia, 27, 143, 10.1016/S1546-5098(08)00004-6

Metzger, 2007, Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus, J. Thermal. Biol, 32, 144, 10.1016/j.jtherbio.2007.01.010

Walther, 2007, Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus, Biogeosci. Discuss, 6, 2837

Michaelidis, 2005, Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis, Mar. Ecol. Prog. Ser, 293, 109, 10.3354/meps293109

2008, Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view, Mar. Ecol. Prog. Ser, 373, 203, 10.3354/meps07768

Shirayama, 2005, Effect of increased atmospheric CO2 on shallow water marine benthos, J. Geophys. Res, 110, C09S08, 10.1029/2004JC002618

Langenbuch, 2005, Synergistic effects of temperature extremes, hypoxia and increases in CO2 on marine animals: from earth history to global change, J. Geophys. Res, 110, C09S10

Seibel, 2003, Marine biotic response to elevated carbon dioxide, Adv. Appl. Biodiv. Sci, 4, 59

Lindinger, 1984, Acid–base balance in the sea mussel Mytilus edulis. Effects of environmental hypercapnia on intra and extracellular acid–base balance, Mar. Biol. Lett, 5, 371

Nienhuis, S, Palmer, AR, and Harley, CDG (2010). Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. B.

DeFur, 1984, Physiological compensation to short term air exposure in red rock crabs Cancer productus from littoral and sublittoral habitats: Acid–base balance, Physiol. Zool, 57, 151, 10.1086/physzool.57.1.30155977

Gazeau, 2007, Impact of elevated CO2 on shellfish calcification, Geophys. Res. Lett, 34, L07603, 10.1029/2006GL028554

Ries, 2009, Marine calcifiers exhibit mixed responses to CO2 -induced ocean acidification, Geol, 37, 1131, 10.1130/G30210A.1

Berge, 2006, Effects of increased water concentrations of CO2 on growth of the bivalve Mytilus edulis L, Chemosphere, 62, 681, 10.1016/j.chemosphere.2005.04.111

Gutowska, 2008, Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2, MEPS, 373, 303, 10.3354/meps07782

Fennel, 2008, Denitrification effects on air-sea CO2 flux in the coastal ocean: Simulations for the northwest North Atlantic, Geophys. Res. Lett, 35, L24608, 10.1029/2008GL036147

Cao, 2008, Atmospheric CO2 stabilization and ocean acidification, Geophys. Res. Lett, 35, L19609, 10.1029/2008GL035072

Turley, 2010, The societal challenge of ocean acidification, Mar. Poll. Bull, 60, 787, 10.1016/j.marpolbul.2010.05.006

Trabalka, JR, and Reichle, DE (1986). The Changing Carbon Cycle—A Global Analysis, Springer.

Lewis, E, and Wallace, D (1998). Program Development for CO2 System Calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

Mehrbach, 1973, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr, 18, 897, 10.4319/lo.1973.18.6.0897

Dickson, 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res, 34, 1733, 10.1016/0198-0149(87)90021-5

Gutowska, 2010, Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis, Mar. Biol, 157, 1653, 10.1007/s00227-010-1438-0

Trimborn, 2009, The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms, J. Exp. Mar. Biol. Ecol, 376, 26, 10.1016/j.jembe.2009.05.017

Boutilier, 1990, Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid, Respir. Physiol, 81, 255, 10.1016/0034-5687(90)90050-9

Heisler, N (1986). Acid-Base Regulation in Animals, Elsevier.

Wittmann, 2010, Ion regulatory capacity and the biogeography of Crustacea at high southern latitudes, Polar Biol, 33, 919, 10.1007/s00300-010-0768-1

Lynch, 1994, Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions, J. Pharm. Biomed. Anal, 12, 5, 10.1016/0731-7085(94)80004-9

Willker, 1997, Metabolite identification in cell extracts and culture media by proton-detected 2D-H,C-NMR spectroscopy, J. Magn. Reson. Anal, 2, 21

Viant, 2003, NMR based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health, Environ. Sci. Technol, 37, 4982, 10.1021/es034281x

Nunes, 2010, NMR metabolic profile of human follicular fluid, NMR Biomed, 23, 485, 10.1002/nbm.1488

Bubb, 1999, Heteronuclear NMR studies of metabolites produced by Cryptococcus neoformans in culture media: identification of possible virulence factors, Magn. Reson. Med, 42, 442, 10.1002/(SICI)1522-2594(199909)42:3<442::AID-MRM6>3.0.CO;2-Q

Sze, 1990, Determination of metabolite and nucleotide concentrations in proliferating lymphocytes by 1H NMR of acid extracts, Biochim. Biophys. Acta, 1054, 181, 10.1016/0167-4889(90)90240-E

Dabos, 2002, 1H NMR spectroscopy as a tool to evaluate key metabolic functions of primary porcine hepatocytes after cryopreservation, NMR Biomed, 15, 241, 10.1002/nbm.765

Lannig, 2006, Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters, Aquat. Toxicol, 79, 278, 10.1016/j.aquatox.2006.06.017

Bougrier, 1995, Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg), Aquaculture, 134, 143, 10.1016/0044-8486(95)00036-2

Lucas, 1985, The use of physiological condition index in marine bivalve aquaculture, Aquaculture, 44, 187, 10.1016/0044-8486(85)90243-1

Baucum, 2000, Effects of PCBs sorbed to algal paste and sediments on stress protein response (HSP70 family) in the eastern oyster, Crassostrea virginica, Mar. Environ. Res, 50, 341, 10.1016/S0141-1136(00)00079-9

Cherkasov, 2006, Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses, J. Exp. Biol, 209, 1274, 10.1242/jeb.02093

1996, Metabolic depression during environmental stress: The role of extracellular versus intracellular pH in Sipunculus nudus, J. Exp. Biol, 199, 1801, 10.1242/jeb.199.8.1801

Willson, 2000, Whole animal and gill tissue oxygen uptake in the Eastern oyster, Crassostrea virginica: Effect of hypoxia, hypercapnia, air exposure, and infection with the protozoan parasite Perkinsus marinus, J. Exp. Mar. Biol. Ecol, 246, 223, 10.1016/S0022-0981(99)00183-5

Krumschnabel, 1994, Coupling of energy supply and energy demand in isolated goldfish Hepatocytes, Physiol. Zool, 67, 438, 10.1086/physzool.67.2.30163857

Mark, 2005, Thermal sensitivity of cellular energy budgets in some Antarctic fish hepatocytes, Polar Biol, 28, 805, 10.1007/s00300-005-0018-0

Addadi, 2006, Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes, Chem. Eur. J, 12, 980, 10.1002/chem.200500980

Palmer, 1983, Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods, Mar. Biol, 75, 287, 10.1007/BF00406014

Palmer, 1992, Calcification in Marine Molluscs: How Costly is it?, Proc. Natl. Acad. Sci, 89, 1379, 10.1073/pnas.89.4.1379

Fretter, V (1968). Symposium of Zoological Society of London. Studies in the Structure, Physiology and Ecology of Molluscs, Academic Press.

Bonucci, E (1992). Calcification in Biological Systems, CRC Press.

Mount, 2004, Hemocyte-mediated shell mineralization in the eastern oyster, Science, 304, 297, 10.1126/science.1090506

Day, 2000, How costly is molluscan shell erosion? A comparison of two patellid limpets with contrasting shell structures, J. Exp. Mar. Biol. Ecol, 243, 185, 10.1016/S0022-0981(99)00120-3

Kurihara, 2008, Effects of elevated p CO2 on early development in the mussel Mytilus galloprovincialis, Aquat. Biol, 4, 225, 10.3354/ab00109

Wood, 2008, Ocean acidification may increase calcification rates, but at a cost, Proc. R. Soc. B, 275, 1767, 10.1098/rspb.2008.0343

Thomsen, J, and Melzner, F (2010). Seawater acidification does not elicit metabolic depression in the blue mussel Mytilus edulis. Mar. Biol, Submitted.

Langenbuch, 2003, Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthesis?, J. Exp. Biol, 206, 3895, 10.1242/jeb.00620

Langenbuch, 2006, Effects of environmental hypercapnia on animal physiology: A 13C NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus, Comp. Biochem. Physiol. A, 144, 479, 10.1016/j.cbpa.2006.04.017

Grieshaber, 1994, Physiological and metabolic responses to hypoxia in invertebrates, Rev. Physiol. Biochem. Pharmacol, 125, 143

Kurochkin, IO, Ivanina, AV, Eilers, S, Downs, CA, May, LA, and Sokolova, IM (2009). Cadmium affects metabolic responses to prolonged anoxia and reoxygenation in eastern oysters Crassostrea virginica. Am. J. Physiol, R1262–R1272.

Michaelidis, 2005, Extracellular and Intracellular Acid-Base Status with Regard to the Energy Metabolism in the Oyster Crassostrea gigas during Exposure to Air, Physiol. Biochem. Zool, 78, 373, 10.1086/430223

Deigweiher, K (2009). Impact of high CO2 concentrations on marine life: Molecular mechanisms and physiological adaptations of pH and ion regulation in marine fish. [PhD Thesis, University of Bremen].

Thomsen, 2010, Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future ocean acidification, Biogeosci. Dis, 7, 5119

Zittier, ZMC, Kutsch, B, Bock, C, and Pörtner, HO (, January June/July). Synergistic impacts of ocean acidification and temperature increase on the physiology of Mytilus edulis. Prague, Czech Republic.

Stark, A, Treydte, T, Heilmeyer, O, Brey, T, and Pörtner, HO (, January June/July). Is the Greenland smoothcockle (Serripes groenlandicus) sensitive to elevated CO2 and temperature levels?. Prague, Czech Republic.

Hardewig, 1994, Interactions of anaerobic propionate formation and acid-base status in Arenicola marina: an analysis of propionyl-CoA carboxylase, Physiol. Zool, 67, 892, 10.1086/physzool.67.4.30163870

1987, Contributions of anaerobic metabolism to pH regulation in animal tissues: theory, J. Exp. Biol, 131, 69, 10.1242/jeb.131.1.69

Bock, 2000, Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle, J. Exp. Biol, 203, 2417, 10.1242/jeb.203.16.2417

Seidelin, 2001, Vacuolar-type H+-ATPase and Na+, K+-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water, Zoolog. Sci, 18, 1199, 10.2108/zsj.18.1199

Deigweiher, 2008, Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia, Am. J. Physiol, 295, R1660

Heldmaier, G, and Klingenspor, M (2000). Life in the Cold, Springer Verlag.

Marshall, 2002, Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis, J. Exp. Zool, 293, 264, 10.1002/jez.10127

Perry, 2006, Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models, Respir. Physiol. Neurobiol, 154, 199, 10.1016/j.resp.2006.04.010

Parker, 2009, The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850), Global Change Biol, 15, 2123, 10.1111/j.1365-2486.2009.01895.x

Sokolova, 2008, Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change, Clim. Res, 37, 181, 10.3354/cr00764