Tác động của việc pha Mg vào tính chất cấu trúc, hình thái và điện môi của gốm PbTiO3 tổng hợp bằng phương pháp kết hợp liên tiếp giữa sol-gel và thủy nhiệt ở nhiệt độ thấp

E. H. Lahrar1, H. Essaoudi2
1Process, Materials and Environment Laboratory, Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2Engineering Sciences Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Tóm tắt

Một phương pháp lai mới dựa trên sự kết hợp giữa quy trình sol-gel và phương pháp thủy nhiệt đã được sử dụng thành công để chế tạo bột Pb1 − xMgxTiO3 (PMxT) với x = 0.0, 0.05, 0.1, 0.2 và 0.3 ở nhiệt độ thấp dưới 200 °C. Bằng cách sửa đổi giá trị của x, ảnh hưởng của tỷ lệ Pb/Mg lên các đặc tính cấu trúc, hình thái và điện môi đã được khảo sát. Phân tích các hợp chất thu được bằng phương pháp nhiễu xạ tia X (XRD) và phương pháp tinh chỉnh Rietveld cho thấy tất cả các hợp chất tinh thể trong pha loại perovskite tinh khiết, chứng minh rằng việc pha thêm magie vào cấu trúc vuông của PbTiO3 (P4mm) làm giảm độ tứ phương (c/a) của lưới tinh thể, và tỷ lệ của cấu trúc giả lập khối (Pm3m) tăng dần, đạt tối đa 92.38% tại nồng độ magie x = 0.3. Kiểm tra bằng kính hiển vi điện tử quét (SEM) cho thấy kích thước hạt trung bình giảm khi lượng Mg tăng, từ 4.371 μm đối với PbTiO3 nguyên chất xuống 0.412 μm đối với PT-Mg với x = 0.3. Các tính chất điện môi phụ thuộc vào tần số đã được nghiên cứu bằng phương pháp quang phổ trở kháng phức ở khoảng nhiệt độ từ RT đến 550 °C, trong đó đã phát hiện thấy một quá trình chuyển pha cấu trúc và hai bất thường A và B phụ thuộc vào nhiệt độ tại các tần số đo khác nhau đối với tất cả các gốm, cho thấy sự giảm đi của điện dung tối đa (εrmax) theo hàm lượng magie xuống mức thấp khoảng 30% magie (ε = 1248.86), mà không có ảnh hưởng đáng kể đến nhiệt độ chuyển tiếp từ hiệu ứng tứ cực sang hiệu ứng điện môi. Bản chất của quá trình chuyển tiếp đã được nghiên cứu bằng cách sử dụng định luật Curie-Weiss, cho thấy khả năng khuếch tán tăng lên với nồng độ ion Mg2+. Điều này có thể được giải thích bằng sự dao động thành phần và sự rối loạn cấu trúc trong sự sắp xếp cation tại các vị trí tinh thể.

Từ khóa

#PbTiO3 #Mg doping #sol-gel #hydrothermal #structural properties #dielectric properties

Tài liệu tham khảo

Q. Lin et al., Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications. Ceram. Int. 46(1), 1171–1177 (2020). https://doi.org/10.1016/j.ceramint.2019.09.086 Y. Deng et al., Exploring the underlying mechanisms behind the increased far infrared radiation properties of perovskite-type Ce/Mn co-doped ceramics. Mater. Res. Bull. 109, 233–239 (2019). https://doi.org/10.1016/j.materresbull.2018.09.042 H. Kagata, J. Kato, K. Nishimoto, T. Inoue, Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies. Jpn. J. Appl. Phys. 32(9), 4332–4334 (1993). https://doi.org/10.1143/JJAP.32.4332/XML N. Ramadass, ABO3-type oxides—Their structure and properties—A bird’s eye view. Mater. Sci. Eng. 36(2), 231–239 (1978). https://doi.org/10.1016/0025-5416(78)90076-9 K.R. Kandula, S.S.K. Raavi, S. Asthana, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3 + ion in lead free Na0.5Bi0.5TiO3. J. Alloys Compd. 732, 233–239 (2018). https://doi.org/10.1016/J.JALLCOM.2017.10.186 M. Faizan et al., Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.1038/s41598-021-86145-x Y. Wang, J. Duan, X. Yang, L. Liu, L. Zhao, Q. Tang, The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators. Nano Energy 69, 104418 (2020). https://doi.org/10.1016/J.NANOEN.2019.104418 K.R. Tolman et al., Structural effect of aliovalent doping in lead perovskites. J. Solid State Chem. 225, 359–367 (2015). https://doi.org/10.1016/J.JSSC.2014.12.024 C. Gu, J.S. Lee, Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 10(5), 5413–5418 (2016). https://doi.org/10.1021/ACSNANO.6B01643/SUPPL_FILE/NN6B01643_SI_001.PDF F. Wang, I. Grinberg, A.M. Rappe, Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4871707/131066 H.Y. Zhang et al., Observation of Vortex Domains in a Two-Dimensional Lead Iodide Perovskite Ferroelectric. J. Am. Chem. Soc. 142(10), 4925–4931 (2020). https://doi.org/10.1021/JACS.0C00371/SUPPL_FILE/JA0C00371_SI_011.CIF G. Wang et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. (2015). https://doi.org/10.1126/SCIADV.1500613/SUPPL_FILE/1500613_SM.PDF L.C. Kretly, A.F.L. Almeida, R.S. De Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw. Opt. Technol. Lett. 39(2), 145–150 (2003). https://doi.org/10.1002/MOP.11152 P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nature Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z J. Huang, Y. Cao, M. Hong, P. Du, Ag-Ba0.75Sr0.25TiO3 composites with excellent dielectric properties. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2836764/321147 H. Tan, H. Takenaka, C. Xu, W. Duan, I. Grinberg, A.M. Rappe, First-principles studies of the local structure and relaxor behavior of Pb(Mg1/3Nb2/3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions. Phys. Rev. B 97(17), 174101 (2018). https://doi.org/10.1103/PHYSREVB.97.174101/FIGURES/4/MEDIUM M.V. Raymond, D.M. Smyth, Defects and charge transport in perovskite ferroelectrics. J. Phys. Chem. Solids 57(10), 1507–1511 (1996). https://doi.org/10.1016/0022-3697(96)00020-0 P.S. Pizani et al., Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77(6), 824–826 (2000). https://doi.org/10.1063/1.1306663 X. Liu, J. Fu, G. Chen, First-principles calculations of electronic structure and optical and elastic properties of the novel ABX3-type LaWN3 perovskite structure. RSC Adv. 10(29), 17317–17326 (2020). https://doi.org/10.1039/C9RA10735E M. Wang, G.L. Tan, Q. Zhang, Multiferroic Properties of Nanocrystalline PbTiO3 Ceramics. J. Am. Ceram. Soc. 93(8), 2151–2154 (2010). https://doi.org/10.1111/J.1551-2916.2010.03691.X A. Sani, M. Hanfland, D. Levy, Pressure and Temperature Dependence of the Ferroelectric–Paraelectric Phase Transition in PbTiO3. J. Solid State Chem. 167(2), 446–452 (2002). https://doi.org/10.1006/JSSC.2002.9653 I. Grinberg et al., Structure and polarization in the high Tc ferroelectric Bi(Zn,Ti)O3-PbTiO3 solid solutions. Phys. Rev. Lett. 98(10), 107601 (2007). https://doi.org/10.1103/PHYSREVLETT.98.107601/FIGURES/2/MEDIUM M.K. Suresh, J.K. Thomas, Structural and temperature dependent dielectric properties of nanocrystalline PbTiO3 synthesized through auto-igniting combustion technique. Solid State Sci. 98, 106025 (2019). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2019.106025 P.M. Vilarinho, L. Zhou, M. Pöckl, N. Marques, J.L. Baptista, Dielectric Properties of Pb(Fe2/3W1/3)O3–PbTiO3 Solid-Solution Ceramics. J. Am. Ceram. Soc. 83(5), 1149–1152 (2000). https://doi.org/10.1111/J.1151-2916.2000.TB01346.X D.H. Kang, J.H. Kim, J.H. Park, K.H. Yoon, Characteristics of (Pb1-xSrx)TiO3 thin film prepared by a chemical solution processing. Mater. Res. Bull. 36, 1–2 (2001). https://doi.org/10.1016/S0025-5408(01)00511-6 Z. Ren et al., Room-temperature ferromagnetism in Fe-doped PbTi O3 nanocrystals. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2766839/326246 J. Pal et al., A comparative study of structural and multiferroic properties of Ca, Sr and Ba doped 0.2BiFeO3–0.8PbTiO3 solid solutions. Mater. Charact. 189, 111983 (2022). https://doi.org/10.1016/J.MATCHAR.2022.111983 A. Chandra, D. Pandey, A.K. Tyagi, G.D. Mukherjee, V. Vijayakumar, Phase transition in disordered ferroelectric ceramic Pb0.70 Ca0.30 Ti O3 under pressure. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2719021/326955 A.K.S. Chauhan, V. Gupta, K. Sreenivas, Dielectric and piezoelectric properties of sol–gel derived Ca doped PbTiO3. Mater. Sci. Eng.: B 130(1–3), 81–88 (2006). https://doi.org/10.1016/J.MSEB.2006.02.055 X. Xing, J. Chen, J. Deng, G. Liu, Solid solution Pb1 – xSrxTiO3 and its thermal expansion. J. Alloys Compd. 360, 1–2 (2003). https://doi.org/10.1016/S0925-8388(03)00345-1 F.M. Pontes et al., Structural and morphological characterization of Pb1–xBaxTiO3 thin films prepared by chemical route: an investigation of phase transition. Mater. Chem. Phys. 108(2–3), 312–318 (2008). https://doi.org/10.1016/J.MATCHEMPHYS.2007.10.004 Z.S. Macedo, C.R. Ferrari, A.C. Hernandes, Self-propagation high-temperature synthesis of bismuth titanate. Powder Technol. 139(2), 175–179 (2004). https://doi.org/10.1016/J.POWTEC.2003.11.005 M.M.S. Sanad, M.M. Rashad, Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J. Mater. Sci. 27(9), 9034–9043 (2016). https://doi.org/10.1007/S10854-016-4936-0/METRICS D. Harbaoui, M.M.S. Sanad, C. Rossignol, E.K. Hlil, N. Amdouni, S. Obbade, Synthesis and Structural, Electrical, and Magnetic Properties of New Iron-Aluminum Alluaudite Phases β-Na2Ni2M(PO4)3 (M = Fe and Al). Inorg. Chem. 56, 13051–13061 (2017). https://doi.org/10.1021/ACS.INORGCHEM.7B01880/ASSET/IMAGES/MEDIUM/IC-2017-01880P_0015.GIF A.Y. Shenouda, M.M.S. Sanad, Synthesis, characterization and electrochemical performance of Li2NixFe1-xSiO4 cathode materials for lithium ion batteries. Bull. Mater. Sci. 40, 1055–1060 (2017). https://doi.org/10.1007/S12034-017-1449-2/METRICS M.M.S. Sanad, H.A. Abdellatif, E.M. Elnaggar, G.M. El-Kady, M.M. Rashad, Understanding structural, optical, magnetic and electrical performances of Fe- or Co-substituted spinel LiMn 1.5 Ni 0.5 O 4 cathode materials. Applied Physics A: Materials Science and Processing 125(2), 1–10 (2019). https://doi.org/10.1007/S00339-019-2445-8/METRICS Z.K. Heiba et al., Impact of Bi doping on the structural, optical, and dielectric features of nano ZnMn2O4. Ceram. Int. 50(3), 5498–5509 (2024). https://doi.org/10.1016/J.CERAMINT.2023.11.303 K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Engineering: B 177(5), 421–427 (2012). https://doi.org/10.1016/J.MSEB.2012.01.003 H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. J Mater. Chem. 21(30), 11347–11351 (2011). https://doi.org/10.1039/C1JM11385B H.M. Rietveld, The Rietveld method. Phys. Scr. 89(9), 098002 (2014). https://doi.org/10.1088/0031-8949/89/9/098002 A. Bendahhou et al., Structural study and temperature dependent relaxation and conduction mechanism of orthorhombic tungsten bronze Ba4La28/3(Zr0.05Ti0.95)18O54 ceramic. Mater. Res. Bull. 165, 112319 (2023). https://doi.org/10.1016/J.MATERRESBULL.2023.112319 F. Chaou, I. Jalafi, A. Bendahhou, E.H. Yahakoub, S.E. Barkany, M. Abou-Salama, Dielectric and optical properties, high temperature conduction, and relaxation behavior of donor-element modified NBST material. Mater. Chem. Phys. 310, 128426 (2023). https://doi.org/10.1016/J.MATCHEMPHYS.2023.128426 A. Bendahhou, P. Marchet, S.E. Barkany, M. Abou-salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J. Alloys Compd. 882, 160716 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160716 C. Fu, N. Chen, G. Du, Comparative studies of nickel doping effects at A and B sites of BaTiO3 ceramics on their crystal structures and dielectric and ferroelectric properties. Ceram. Int. 43(17), 15927–15931 (2017). https://doi.org/10.1016/J.CERAMINT.2017.08.169 H.E. -Dnoub et al., Study of structural and dielectric properties of Nickel-doped BaTiO3 material. Mediterranean J. Chem. 8(3), 228–233 (2019). https://doi.org/10.13171/MJC8319051802HED A. Bendahhou, K. Chourti, S.E. Barkany, M. Abou-Salama, Correlation between crystal structure and dielectric response for orthorhombic tungsten bronze ceramics Ba4(Nd1-xSmx)28/3(Ti0.95Zr0.05)18O54. Ceram. Int. 48(14), 20446–20455 (2022). https://doi.org/10.1016/J.CERAMINT.2022.04.001 F. Chaou et al., Optimisation of electrical conductivity and dielectric properties of Sn4+-doped (Na0.5Bi0.5)TiO3 perovskite. Ceram. Int. 49(11), 17940–17952 (2023). https://doi.org/10.1016/J.CERAMINT.2023.02.163 Y. Ye, X. Li, Z. Cheng, M. Zhang, S. Qu, The influence of sintering temperature and pressure on microstructure and mechanical properties of carbonyl iron powder materials fabricated by electric current activated sintering. Vacuum 137, 137–147 (2017). https://doi.org/10.1016/J.VACUUM.2016.12.044 Y. Sakout et al., Structural, Microstructural, and Dielectric Properties of Nickel-Doped PbTiO3 Ceramics Synthesized by the Hydrothermal Process. J. Electron. Mater. 53(1), 141–156 (2024). https://doi.org/10.1007/S11664-023-10741-Y/METRICS A. Shukla, R.N.P. Choudhary, Ferroelectric phase-transition and conductivity analysis of La3+/Mn4 + modified PbTiO3 nanoceramics. Physica B 405(11), 2508–2515 (2010). https://doi.org/10.1016/J.PHYSB.2010.02.040 R. Gao et al., A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. B 166, 204–212 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.12.010 R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceram. Int. 44, S84–S87 (2018). https://doi.org/10.1016/J.CERAMINT.2018.08.234 R. Gao et al., Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd. 795, 501–512 (2019). https://doi.org/10.1016/J.JALLCOM.2019.05.013 H.T. Martirena, J.C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics. J. Phys. C 7, 3182 (1974). https://doi.org/10.1088/0022-3719/7/17/024 K. Bouayad et al., Sol–gel processing and dielectric properties of (Pb1−yLay)(Zr0.52Ti0.48)O3 ceramics. Physica A 358(1), 175–183 (2005). https://doi.org/10.1016/J.PHYSA.2005.06.021 F.Z. Fadil, T. Lamcharfi, F. Abdi, M. Aillerie, Synthesis and characterization of magnesium doped lead titanate. Cryst. Res. Technol. 46(4), 368–372 (2011). https://doi.org/10.1002/CRAT.201000665 B. Tiwari, R.N.P. Choudhary, Frequency–temperature response of Pb(Zr0.65−xCexTi0.35)O3 ferroelectric ceramics: Impedance spectroscopic studies. J. Alloys Compd 493(1–2), 1–10 (2010). https://doi.org/10.1016/J.JALLCOM.2009.11.120 K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982). https://doi.org/10.1080/00150198208260644 D. Viehland, M. Wuttig, L.E. Cross, The glassy behavior of relaxor ferroelectrics. Ferroelectrics. 120(1), 71–77 (1991). https://doi.org/10.1080/00150199108216802 A. Bendahhou, P. Marchet, A. El-Houssaine, S.E. Barkany, M. Abou-Salama, Relationship between structural and dielectric properties of Zn-substituted Ba 5 CaTi 2 – x Zn x Nb 8 O 30 tetragonal tungsten bronze. CrystEngComm 23(1), 163–173 (2021). https://doi.org/10.1039/D0CE01561J L.H. Omari, L. Hajji, M. Haddad, T. Lamhasni, C. Jama, Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors. Mater. Chem. Phys. 223, 60–67 (2019). https://doi.org/10.1016/J.MATCHEMPHYS.2018.10.035