Impact of Light–Dark Phase on Delay Discounting Behavior in Rats

Hannah K. Mungenast1, Adam E. Fox1
1St. Lawrence University, Canton, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexiuk, N. A. M., & Vriend, J. (2007). Melatonin: Effects on dopaminergic and serotonergic neurons of the caudate nucleus of the striatum of male Syrian hamsters. Journal of Neural Transmission, 114, 549–554. https://doi.org/10.1007/s00702-006-0582-7.

Aschoff, J. (1965). Circadian rhythms in man. Science, 148, 1427–1432.

Babson, K. A., Trainor, C. D., Feldner, M. T., & Blumenthal, H. (2010). A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: An experimental extension. Journal of Behavior Therapy & Experimental Psychiatry, 41, 297–303. https://doi.org/10.1016/j.jbtep.2010.02.008.

Badness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L., & Goldman, B. D. (1993). The timed infusion paradigm for melatonin delivery: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? Journal of Pineal Research, 15, 161–190. https://doi.org/10.1111/j.1600-079X.1993.tb00903.x.

Bates, D., Kliegel, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv preprint arXiv:1506.04967

Bedrosian, T. A., Vaughn, C. A., Weil, Z. M., & Nelson, R. J. (2013). Behaviour of laboratory mice is altered by light pollution within the housing environment. Animal Welfare, 22, 483–487. https://doi.org/10.7120/09627286.22.4.483.

Castelhano-Carlos, M. J., & Baumans, V. (2009). The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Laboratory Animals, 43, 311–327. https://doi.org/10.1258/la.2009.0080098.

Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science, 284, 1670–1672. https://doi.org/10.1126/science.284.5420.1670.

Curzon, P., Zhang, M., Radek, R. J., & Fox, G. B. (2009). The behavioral assessment of sensorimotor processes in the mouse: acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking. In J. J. Buccafusco (Ed.), Methods of behavior analysis in neuroscience (2nd ed.). Boca Raton, FL: CRC Press/Taylor & Francis.

der Zee, V., Eddy, A., Havekes, R., Barf, R. P., Hut, R. A., Nijholt, I. M., Jacobs, E. H., & Gerkema, M. P. (2008). Circadian time-place learning in mice depends on cry genes. Current Biology, 18, 844–848. https://doi.org/10.1016/j.cub.2008.04.077.

di Cagno, A., Battaglia, C., Giombini, A., Piazza, M., Fiorilli, G., Calcagno, G., Pigozzi, F., & Borrione, P. (2013). Time of day–effects on motor coordination and reactive strength in elite athletes and untrained adolescents. Journal of Sports Science & Medicine, 12, 182–189.

Dijk, D.-J., Neri, D. F., Wyatt, J. K., Ronda, J. M., Riel, E., Ritz-De Cecco, A., Hughes, R. J., Elliott, A. R., Prisk, G. K., West, J. B., & Czeisler, C. A. (2001). Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. American Journal of Physiology—Regulatory, Integrative & Comparative Physiology, 281, R1647–R1664. https://doi.org/10.1152/ajpregu.2001.281.5.R1647.

Evenden, J. L., & Ryan, C. N. (1996). The pharmacology of impulsive behaviour in rats: The effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology, 128, 161–170. https://doi.org/10.1007/s002130050121.

Fox, A. E., & Kyonka, E. G. (2013). Pigeon responding in fixed-interval and response-initiated fixed-interval schedules. Journal of the Experimental Analysis of Behavior, 100, 187–197. https://doi.org/10.1002/jeab.38.

Fox, A. E., & Kyonka, E. G. (2015). Timing in response-initiated fixed intervals. Journal of the Experimental Analysis of Behavior, 103, 375–392. https://doi.org/10.1002/jeab.120.

Fox, A. E., & Kyonka, E. G. (2016). Effects of signaling on temporal control of behavior in response-initiated fixed intervals. Journal of the Experimental Analysis of Behavior, 106, 210–224. https://doi.org/10.1002/jeab.226.

Fox, A. E., Visser, E. J., & Nicholson, A. M. (2019). Interventions aimed at changing impulsive choice in rats: Effects of immediate and relatively long delay to reward training. Behavioural Processes, 158, 126–136. https://doi.org/10.1016/j.beproc.2018.11.009.

Galtress, T., & Kirkpatrick, K. (2010). The role of the nucleus accumbens core in impulsive choice, timing, and reward processing. Behavioral Neuroscience, 124, 26–43. https://doi.org/10.1037/a0018464.

Garcia, A., & Kirkpatrick, K. (2013). Impulsive choice behavior in four strains of rats: Evaluation of possible models of attention-deficit/hyperactivity disorder. Behavioural Brain Research, 238, 10–22. https://doi.org/10.1016/j.bbr.2012.10.017.

Gould, T. D., Dao, D. T., & Kovacsics, C. E. (2009). The open field test. In Mood and anxiety related phenotypes in mice (pp. 1–20). Humana Press.

Hasler, B. P., & Clark, D. B. (2013). Circadian misalignment, reward-related brain function, and adolescent alcohol involvement. Alcoholism: Clinical and Experimental Research, 37(4), 558–565.

Hawkins, P., & Golledge, H. D. R. (2018). The 9 to 5 rodent—time for change? Scientific and animal welfare implications of circadian and light effects on laboratory mice and rats. Journal of Neuroscience Methods, 300, 20–25. https://doi.org/10.1016/j.jneumeth.2017.05.014.

Hayes, L. J., & Delgado, D. (2007). Invited commentary on animal models in psychiatry: Animal models of non-conventional human behavior. Behavior Genetics, 37, 11–17. https://doi.org/10.1007/s10519-006-9126-z.

Kamphuis, J., Baichel, S., Lancel, M., Boer, S. F., Koolhaas, J. M., & Meerlo, P. (2017). Sleep restriction in rats leads to changes in operant behaviour indicative of reduced prefrontal cortex function. Journal of Sleep Research, 26, 5–13. https://doi.org/10.1111/jsr.12455.

Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., & McEwen, B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proceedings of the National Academy of Sciences, 108, 1657–1662. https://doi.org/10.1073/pnas.0906791106.

Marshall, A. T., & Kirkpatrick, K. (2016). Mechanisms of impulsive choice: III. The role of reward processes. Behavioural Processes, 123, 134–148. https://doi.org/10.1016/j.beproc.2015.10.013.

Morales-Delgado, N., Popovic, N., De La Cruz Sanchez, E., Caballero Bleda, M., & Popovic, M. (2018). Time-of-day and age impact on memory in elevated plus-maze in rats. Frontiers in Behavioral Neuroscience, 12, 304. https://doi.org/10.3389/fnbeh.2018.00304.

Moriya, S., Tahara, Y., Sasaki, H., Ishigooka, J., & Shibata, S. (2015a). Housing under abnormal light–dark cycles attenuates day/night expression rhythms of the clock genes Per1, Per2, and Bmal1 in the amygdala and hippocampus of mice. Neuroscience Research, 99, 16–21. https://doi.org/10.1016/j.neures.2015.05.005.

Moriya, S., Tahara, Y., Sasaki, H., Ishigooka, J., & Shibata, S. (2015b). Phase-delay in the light–dark cycle impairs clock gene expression and levels of serotonin, norepinephrine, and their metabolites in the mouse hippocampus and amygdala. Sleep Medicine, 16, 1352–1359. https://doi.org/10.1016/j.sleep.2015.06.020.

Munn, E., Bunning, M., Prada, S., Bohlen, M., Crabbe, J. C., & Wahlsten, D. (2011). Reversed light–dark cycle and cage enrichment effects on ethanol-induced deficits in motor coordination assessed in inbred mouse strains with a compact battery of refined tests. Behavioural Brain Research, 224, 259–271. https://doi.org/10.1016/j.bbr.2011.05.030.

Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior, 76, 235–243. https://doi.org/10.1901/jeab.2001.76-235.

Panfil, K., Bailey, C., Davis, I., Mains, A., & Kirkpatrick, K. (2020). A time-based intervention to treat impulsivity in male and female rats. Behavioural Brain Research, 379. https://doi.org/10.1016/j.bbr.2019.112316.

Perry, J. L., Larson, E. B., German, J. P., Madden, G. J., & Carroll, M. E. (2005). Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology, 178, 193–201. https://doi.org/10.1007/s00213-004-1994-4.

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/.

Renee Renda, C., Rung, J. M., Hinnenkamp, J. E., Lenzini, S. N., & Madden, G. J. (2018). Impulsive choice and pre-exposure to delays: IV. Effects of delay- and immediacy-exposure training relative to maturational changes in impulsivity. Journal of the Experimental Analysis of Behavior, 109(3), 587–599. https://doi.org/10.1002/jeab.432.

Saricaoglu, F., Akinci, S. B., Gozacan, A., Guner, B., Rezaki, M., & Aypar, U. (2005). The effect of day and night shift working on the attention and anxiety levels of anesthesia residents. Turkish Journal of Psychiatry, 16, 106–112.

Smith, A. P., Marshall, A. T., & Kirkpatrick, K. (2015). Mechanisms of impulsive choice: II. Time-based interventions to improve self-control. Behavioural Processes, 112, 29–42. https://doi.org/10.1016/j.beproc.2014.10.010.

Stein, J. S., Johnson, P. S., Renda, C. R., Smits, R. R., Liston, K. J., Shahan, T. A., & Madden, G. J. (2013). Early and prolonged exposure to reward delay: effects on impulsive choice and alcohol self-administration in male rats. Experimental & Clinical Psychopharmacology, 21, 172–180. https://doi.org/10.1037/a0031245.

Vogel, S. W., Bijlenga, D., Tanke, M., Bron, T. I., van der Heijden, K. B., Swaab, H., Beekman, A. T. F., & Kooij, J. S. (2015). Circadian rhythm disruption as a link between attention-deficit/hyperactivity disorder and obesity? Journal of Psychosomatic Research, 79, 443–450. https://doi.org/10.1016/j.jpsychores.2015.10.002.

Wahlsten, D., et al. (2003). Different data from different labs: Lessons from studies of gene-environment interaction. Journal of Neurobiology, 54, 283–311. https://doi.org/10.1002/neu.10173.

Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322–328. https://doi.org/10.1038/nprot.2007.44.