Impact of Entropy Generation and Nonlinear Thermal Radiation on Darcy–Forchheimer Flow of MnFe2O4-Casson/Water Nanofluid due to a Rotating Disk: Application to Brain Dynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ. Fed 231, 99–106 (1995)
Lin, Y.; Zheng, L.; Zhang, X.; Ma, L.; Chen, G.: MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int. J. Heat Mass Transf. 84, 903–911 (2015)
Madhu, M.; Kishan, N.; Chamkha, A.J.: Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propuls. Power Res. 6, 31–40 (2017)
Bai, Y.; Liu, X.; Zhang, Y.; Zhang, M.: Stagnation-point heat and mass transfer of MHD Maxwell nanofluids over a stretching surface in the presence of thermophoresis. J. Mol. Liq. 224, 1172–1180 (2016)
Zadi, M.; Hashemi Pour, S.M.R.; Karimdoost Yasuri, A.; Chamkha, A.J.: Mixed convection of a nanofluid in a three-dimensional channel. J. Therm. Anal. Calorim. 136(6), 2461–2475 (2019)
Sheikholeslami, M.; Sajjadi, H.; Amri Delouei, A.; Atashafrooz, M.; Li, Z.: Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3nanoparticles, mixed convection of a nanofluid in a three-dimensional channel. J. Therm. Anal. Calorim. 136(6), 2477–2485 (2019)
Hayat, T.; Kiyani, M.Z.; Alsaedi, A.; Khan, M.I.; Ahmad, I.: Mixed convective three dimensional flow of Williamson nanofluid subject to chemical reaction. Int. J. Heat Mass Transf. 127, 422–429 (2018)
Turkyilmazoglu, M.; Senel, P.: Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci. 63, 146–158 (2013)
Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq. 211, 119–125 (2015)
Mustafa, M.: MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 108, 1910–1916 (2017)
Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid insprired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)
Dogonchi, A.S.; Armaghani, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng (2019). https://doi.org/10.1007/s13369-019-03956-x
Kasaeian, R.D.; Azarian, O.; Mahian, L.Kolsi; Chamkha, Ali J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)
Forchheimer, P.: Wasserbewegungdurchboden. Z. Ver. D. Ing. 45, 1782–1788 (1901)
Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. Edwards, MI (1946)
Seddeek, M.A.: Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J. Colloid Interface Sci. 293, 137–142 (2006)
Shehzad, S.A.; Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Cattaneo–Christov heat flux model for Darcy–Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J. Mol. Liq. 224, 274–278 (2016)
Bakar, S.A.; Arifin, N.M.; Nazar, R.; Ali, F.M.; Pop, I.: Forced convection boundary layer stagnation-point flow in Darcy–Forchheimer porous medium past a shrinking sheet. Front. Heat Mass Transf. 7, 38 (2016)
Hayat, T.; Muhammad, T.; Al-Mezal, S.; Liao, S.J.: Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo–Christov heat flux. Int. J. Numer. Methods Heat Fluid Flow 26, 2355–2369 (2016)
Chamkha, A.J.; Abbasbandy, S.; Rashad, A.M.; Vajravelu, K.: Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transp. Porous Media 91(1), 261–279 (2012)
Chamkha, Ali J.; Abbasbandy, S.; Rashad, A.M.; Vajravelu, K.: Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid. Meccanica 48(2), 275–285 (2013)
Rashad, A.M.; Chamkha, A.J.; Abdou, M.M.M.: Mixed convection flow of non-Newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid. J. Appl. Fluid Mech. 6(2), 301–309 (2013)
Rashad, A.M.; Chamkha, A.J.; Modather, M.: Mixed convection boundary-layer flow of a nanofluid from a horizontal circular cylinder embedded in a porous medium under convective boundary condition. Comput. Fluids 86, 380–386 (2013)
Rashad, A.M.; Abbasbandy, S.; Chamkha, A.J.: Non-Darcy natural convection from a vertical cylinder embedded in a thermally stratified and nanofluid-saturated porous media. ASME J. Heat Transf. 136(2), 022503 (2014)
Ramreddy, Ch; Murthy, P.V.S.N.; Rashad, A.M.; Chamkha, A.J.: Numerical study of thermally stratified nanofluid saturated non-Darcy porous medium. Eur. Phys. J.-Plus 129(25), 1–11 (2014)
El-Kabeir, S.M.M.; Chamkha, A.J.; Rashad, A.M.: The effect of thermal radiation on non-darcy free convection from a vertical cylinder embedded in a nanofluid porous media. J. Porous Media 17(3), 269–278 (2014)
El-Kabeir, S.M.M.; Modather, M.; Rashad, A.M.: Effect of thermal radiation on mixed convection flow of a nanofluid about a solid sphere in a saturated porous medium under convective boundary condition. J. Porous Media 18(6), 569–584 (2015)
Khan, M.I.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid. Int. Commu. Heat Mass Transf. 91, 216–224 (2018)
Nayak, M.K.; Shaw, S.; Pandey, V.S.; Chamkha, A.J.: Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J. Phys. 92(8), 1017–1028 (2018)
Nayak, M.K.; Shaw, S.; Chamkha, A.J.: Radiative non linear heat transfer analysis on wire coating from a bath of third-grade fluid. Therm. Sci. Eng. Prog. 5, 97–106 (2018)
Khan, M.I.; Qayyum, S.; Hayat, T.; Khan, M.I.; Khan, T.A.: Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys. Lett. A 382, 2017–2026 (2018)
Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)
Qayyum, S.; Hayat, T.; Khan, M.I.; Khan, M.I.; Alsaedi, A.: Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects. J. Mol. Liq. 262, 261–274 (2018)
Afridi, M.I.; Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)
López, A.; Ibáñez, G.; Pantoja, J.; Moreira, J.; Lastres, O.: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Transf. 107, 982–994 (2017)
Bezi, S.; Souayeh, B.; Cheikh, N.B.; Beya, B.B.: Numerical simulation of entropy generation due to unsteady natural convection in a semi-annular enclosure filled with nanofluid. Int. J. Heat Mass Transf. 124, 841–859 (2018)
Hayat, T.; Khan, M.I.; Khan, T.A.; Khan, M.I.; Ahmad, S.; Alsaedi, A.: Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mol. Liq. 265, 629–638 (2018)
Qayyum, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.; Tamoor, M.: Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transf. 127, 933–942 (2018)
Hemalatha, K.; Kameswaran, P.K.; Madhavi, M.V.: Mixed convective heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. Sadhana 40, 455–465 (2015)
Seddeek, M.A.; Odda, S.N.; Aki, M.Y.; Abdelmeguid, M.S.: Analytical solution for the effect of radiation on flow of a magneto-micropolarfluid past a continuously moving plate with suction and blowing. Comput. Materi. Sci. 45, 423–428 (2009)