Impact of Alkali Cation Identity on the Conversion of HCO3 to CO in Bicarbonate Electrolyzers

ChemElectroChem - Tập 8 Số 11 - Trang 2094-2100 - 2021
Arthur G. Fink1, Eric W. Lees2, Zishuai Zhang1, Shaoxuan Ren1, Roxanna S. Delima2,3, Curtis P. Berlinguette4,2,1,3
1Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
2Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
3Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
4Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario, M5G 1 M1 Canada

Tóm tắt

AbstractThe reduction of CO2 to CO from a bicarbonate feedstock offers an opportunity to directly use aqueous carbon capture solutions, while bypassing ex‐situ energy‐intensive gaseous CO2 regeneration. In this study, we resolved how the electrolyte cation identity (Li+, Na+, K+, Cs+) affects the two reactions that make bicarbonate electrolysis possible: (i) the production of in‐situ CO2 formed through reaction of HCO3 (from the catholyte) with H+ (sourced from the membrane); and (ii) the electroreduction of CO2 into CO. Our results show that cation identity does not change the rate of in‐situ CO2 formation, but it does enhance the rate of the CO2 reduction reaction (CO2RR). Electrolysis experiments performed with a constant [HCO3] showed that CO selectivities progressively increased for the series Li+, Na+, K+, and Cs+, respectively. Optimization of the electrolyte composition yielded a CO selectivity of ∼80 % during electrolysis of 1.5 M CsHCO3 solutions at 100 mA cm−2, while saturated LiHCO3 solutions (0.84 M) yielded CO selectivities values of merely 30 % at the same current density. This study demonstrates a quantitative relationship between CO product selectivity and the cation radius, which provides a pathway to integrate bicarbonate electrolysis to carbon capture.

Từ khóa


Tài liệu tham khảo

10.1016/j.joule.2017.09.003

10.1021/ja202642y

10.1021/acs.accounts.8b00010

10.1021/acsenergylett.9b02356

10.1039/C8EE00097B

10.1021/acs.iecr.7b03514

10.1126/science.aav3506

10.1021/acsenergylett.7b01017

10.1126/science.aay4217

10.1021/acs.accounts.9b00324

10.1038/s41467-020-19731-8

10.1039/C9EE03077H

10.1016/j.joule.2018.01.014

10.1021/acsenergylett.0c00234

10.1021/acsenergylett.0c01359

10.1021/acsenergylett.0c00898

10.1021/acsenergylett.0c01291

10.1016/j.joule.2019.05.021

10.1021/acsenergylett.0c01606

10.1021/acsenergylett.9b00975

Kenis P., 2019, ChemSusChem, 13, 855

10.1039/C2CS35360A

10.1246/bcsj.64.123

10.1021/jacs.7b06765

10.1039/C9EE02485A

10.1039/C9EE01341E

10.1038/s41560-020-00735-z

10.1039/C5CP03283K

10.1021/jacs.6b07612

10.1021/acsami.7b07351

10.1016/0022-0728(95)03897-P

10.1149/2.052301jes

10.1021/acscatal.6b02299

10.1039/C7CP06087D

10.1039/C8CP07807F

10.1002/celc.202000089

10.1021/acscatal.0c03553

10.1021/acsenergylett.6b00475

10.1002/cphc.201900680

10.1021/j150579a011

10.1126/sciadv.abd2569

10.1002/anie.201912412

10.1016/j.joule.2018.05.006

10.1021/acsenergylett.7b01017

10.1016/j.electacta.2005.03.015

10.1021/acs.inorgchem.8b02311

D. R. Lide CRC Handbook of Chemistry and Physics 85th Edition CRC Press 2004.

10.1021/acsami.9b13081

10.1006/jmre.1998.1405

10.1366/000370209790108905