Impact of AgNPs on the optical thermometry and stability of bismuth modified tellurium-tungstate upconverting glass
Tài liệu tham khảo
Nadort, 2016, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties, Nanoscale, 8, 13099, 10.1039/C5NR08477F
Pattnaik, 2020, Impact of charge compensation on optical and thermometric behaviour of titanate phosphors, Mater. Res. Bull., 125, 10.1016/j.materresbull.2019.110761
Parchur, 2012, Luminescence properties of Tb3+−doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core–shell formation, Dalton Trans., 41, 11032, 10.1039/c2dt31257c
Reza Dousti, 2013, Efficient infrared-to-visible upconversion emission in Nd3+-doped PbO-TeO2 glass containing silver nanoparticles, J. Appl. Phys., 114, 10.1063/1.4821430
Camilo, 2013, Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+ doped GeO2-PbO glass, J. Appl. Phys., 113, 10.1063/1.4801909
Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E
Rai, 2008, Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles, J. Appl. Phys., 103
Hayakawa, 1999, Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass, Appl. Phys. Lett., 74, 1513, 10.1063/1.123600
Rai, 2008, Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles, J. Appl. Phys., 103
Shahzad, 2019, Polymer microfibers incorporated with silver nanoparticles: a new platform for optical sensing, Nanoscale Res. Lett., 1
Shahzad, 2021, Investigation on optical temperature sensing behaviour via Ag island-enhanced luminescence doped β-NaGdF4: Yb3+/Tm3+ films/microfibers, RSC Adv., 11, 36569, 10.1039/D1RA06336G
Torquato, 2021, Enhanced thermometry parameters in Er3+-doped zinc tellurite glasses containing silver nanoparticles, Optik, 240, 10.1016/j.ijleo.2021.166929
Chastain, 1992, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp., 40, 221
Gaarenstroom, 1977, Initial and final state effects in the ESCA spectra of cadmium and silver oxides, J. Chem. Phys., 67, 3500, 10.1063/1.435347
Hammond, 1975, X-ray photoelectron spectroscopic studies of cadmium-and silver-oxygen surfaces, Anal. Chem., 47, 2193, 10.1021/ac60363a019
Singh, 2014, Structural and optical properties of barium titanate modified bismuth borate glasses, Solid State Sci., 37, 64, 10.1016/j.solidstatesciences.2014.08.010
Kaky, 2017, Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses, Res. Phys., 7, 166
Duval, 1990, Vibrational dynamics and the structure of glasses, J. Phys. Condens. Matter, 2, 10227, 10.1088/0953-8984/2/51/001
Yadav, 2015, A review of the structures of oxide glasses by Raman spectroscopy, RSC Adv., 5, 67583, 10.1039/C5RA13043C
Mirgorodsky, 2012, Structural peculiarities and Raman spectra of TeO2/WO3-based glasses: a fresh look at the problem, J. Solid State Chem., 190, 45, 10.1016/j.jssc.2012.02.011
Chen, 2008, Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas, Nanotechnology, 19, 10.1088/0957-4484/19/45/455604
Azam, 2018, Enhanced frequency upconversion in Er3+–Yb3+ codoped heavy metal oxides based tellurite glasses, Methods Appl. Fluoresc., 6, 10.1088/2050-6120/aaa5e8
Rajesh, 2017, Enhancement of down-and upconversion intensities in Er3+/Yb3+ co-doped oxyfluoro tellurite glasses induced by Ag species and nanoparticles, J. Lumin., 192, 250, 10.1016/j.jlumin.2017.06.059
Chen, 2010, Size-controlled and size-designed synthesis of nano/submicrometer Ag particles, Cryst. Growth Des., 10, 3378, 10.1021/cg901497p
Wu, 2011, Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses, J. Phys. Chem. C, 115, 25040, 10.1021/jp207035c
Dousti, 2013, Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass, J. Lumin., 143, 368, 10.1016/j.jlumin.2013.04.017
Durairajan, 2016, Sol–gel synthesis and photoluminescence analysis of Sm3+: naGd (WO4)2 phosphors, J. Lumin., 170, 743, 10.1016/j.jlumin.2015.08.013
Kumar, 2022, Influence of MnO2 nanoparticles on the optical properties of polypyrrole matrix, Mater. Sci. Semicond. Process., 139, 10.1016/j.mssp.2021.106322
Judd, 1962, Optical absorption intensities of rare-earth ions, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750
Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 37, 511, 10.1063/1.1701366
Eyal, 1985, Spectroscopy of praseodymium (III) in zirconium fluoride glass, Chem. Phys. Lett., 117, 108, 10.1016/0009-2614(85)85216-7
Azam, 2017, Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: judd-Ofelt analysis and frequency upconversion, Solid State Sci., 66, 7, 10.1016/j.solidstatesciences.2017.02.001
Rodin, 2018, Erbium doped sodium magnesium boro-tellurite glass: stability and Judd-Ofelt analysis, Mater. Chem. Phys., 216, 177, 10.1016/j.matchemphys.2018.06.006
Malta, 2003, Intensities of 4f-4f transitions in glass materials, Química Nova, 26, 889, 10.1590/S0100-40422003000600018
Mukhopadhyay, 2018, Investigation of photoluminescence properties, Judd–Ofelt analysis, luminescence nanothermometry and optical heating behaviour of Er3+/Eu3+/Yb3+: naZnPO4 nanophosphors, New J. Chem., 42, 13122, 10.1039/C8NJ02320D
Tanabe, 2002, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C.R. Chim., 5, 815, 10.1016/S1631-0748(02)01449-2
Azam, 2016, Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses, J. Mater. Sci. Mater. Electron., 27, 12633, 10.1007/s10854-016-5396-2
Carnall, 1968, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys., 49, 4424, 10.1063/1.1669893
Dey, 2014, Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices, Dalton Trans., 43, 111, 10.1039/C3DT51773J
Kesarwani, 2022, Fluorescence intensity ratio technique and its reliability, Methods Appl. Fluoresc., 10, 10.1088/2050-6120/ac70ab
Zhang, 2020, Temperature-sensing luminescent materials La 9.67 Si 6 O 26.5: yb 3+–Er 3+/Ho 3+ based on pump-power-dependent upconversion luminescence, Inorg. Chem. Front., 7, 4892, 10.1039/D0QI01058H
Peng, 2018, Reliable temperature sensing based on intense green upconversion emissions of Y2Mo4O15: Yb3+, Er3+ under 980nm excitation, Physica B, 550, 145, 10.1016/j.physb.2018.08.031
Wang, 2014, Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor, RSC Adv., 4, 24170, 10.1039/c4ra02779e
Prasad, 2022, Thermally stable upconverting Na3Zr2(SiO4) 2PO4: Er3+/Yb3+ phosphors for displays and optical thermometry, J. Alloys Compd., 911, 10.1016/j.jallcom.2022.164968
Chen, 2017, Up-conversion luminescence and temperature sensing characteristics of Er3+/Yb3+ co-doped phosphate glasses, J. Mater. Sci. Mater. Electron., 28, 15657, 10.1007/s10854-017-7454-9
Luo, 2022, Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics, J. Alloys Compd., 910, 10.1016/j.jallcom.2022.164859