Impact assessment of Beirut explosion on local and regional air quality

Springer Science and Business Media LLC - Tập 14 - Trang 1911-1929 - 2021
Parya Broomandi1,2, Ali Jahanbakhshi3, Amirhossein Nikfal4, Jong Ryeol Kim1, Ferhat Karaca1
1Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
2Department of Chemical Engineering, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran
3Lancaster Environmental Centre, Lancaster University, Lancaster, UK
4Atmospheric Science and Meteorological Research Centre, Tehran, Iran

Tóm tắt

On 4th August 2020, drastic explosions occurred at the port of Beirut, Lebanon. These explosions released an extensive amount of toxic gases and caused atmospheric damages along with terrestrial and marine disturbances. In the current study, the impact of the incident on both local and regional air quality was assessed by ALOHA and HYSPLIT models. The ALOHA results estimated the concentrations of NO2 and NO and their exposure times for two specific densely populated locations in the high-risk zone. The concentrations of outdoor NO2 exceeded the AEGL-3 tier in Borj Hammoud, and Jdeideh after 8, and 10 min of the explosion, respectively. The HYSPLIT results showed the movement of NOx cloud eastwards, reaching Syria, and turned southwards, affecting Iraq, Jordon, Saudi Arabia, Kuwait, Iran, and then moved to central Asia through Turkmenistan. The air quality station at Khorramabad, Iran, could observe a small peak during the NOx toxic cloud arrival time on 6th August 2020 at 13:00 UTC. Besides the Mediterranean Sea, the Caspian Sea, the Persian Gulf, and the Gulf of Oman were also affected by the toxic clouds. Damascus is in the high impacted zone with around 105 kg NO2 deposition. Fragile marine environments are also disturbed. The Persian Gulf, with more than 80% of its area, under low impacted zone was receiving 10 µgm−2. Results drag the attention to the associated risk of old factories to the environment. Therefore, it is necessary to have regular safety monitoring in industrial zones and neighboring to eliminate future incidents.

Tài liệu tham khảo

Anjana NS, Amarnath A, Harindranathan Nair MV (2018) Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. J Environ Manage 210:201–209. https://doi.org/10.1016/j.jenvman.2018.01.021 Bariha N, Mishra IM, Srivastava VC (2016) Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): a case study of LPG truck tanker accident in Kannur, Kerala India. J Loss Prev Process Ind 40:449–460. https://doi.org/10.1016/j.jlp.2016.01.020 Brown S, Stutz J (2012) Nighttime Radical Observations and Chemistry. Chem Soc Rev 41:6405–6447. https://doi.org/10.1039/c2cs35181a Brzozowska L (2016) Computer simulation of impacts of a chlorine tanker truck accident. Transp Res Part D Transp Environ 43:107–122. https://doi.org/10.1016/j.trd.2015.12.001 Castner J (2017) Ambient air pollution and emergency department visits for asthma in Erie County, New York 2007–2012. Int Arch Occup Environ Health 91. http://rdcu.be/wO7i. https://doi.org/10.1007/s00420-017-1270-7 CCPS (2010) Chemical process quantitative risk analysis. Guidel. Chem. Process Quant. Risk Anal., Wiley Online Books. https://doi.org/10.1002/9780470935422.ch1 Chaturvedi S, Dave PN (2013) Review on thermal decomposition of ammonium nitrate. J Energ Mater 31:1–26. https://doi.org/10.1080/07370652.2011.573523 Chung Y, Kim H (2015) On the August 12, 2015 occurrence of explosions and fires in Tianjin, China, and the atmospheric impact observed in central Korea. Air Qual Atmos Heal 8:521–532. https://doi.org/10.1007/s11869-015-0371-2 Cisneros R, Gharibi H, Entwistle MR, Tavallali P, Singhal M, Schweizer D (2021) Nitrogen dioxide and asthma emergency department visits in California, USA during cold season (November to February) of 2005 to 2015: A time-stratified case-crossover analysis. Sci Total Environ 754:142089. https://doi.org/10.1016/j.scitotenv.2020.142089 Clarisse L, Clerbaux C, Dentener F, Hurtmans D, Coheur PF (2009) First global ammonia distributions from infrared satellite observations. Nat Geosci 2:479–483. https://doi.org/10.1038/ngeo551 Cooper O, Parrish D, Ziemke J, Balashov N, Cupeiro M, Galbally I, Gilge S, Horowitz L, Jensen N, Lamarque JF, Naik V, Oltmans S, Schwab J, Shindell D, Thompson A, Thouret V, Wang Y, Zbinden R (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elem Sci Anthr 2, 29. https://doi.org/10.12952/journal.elementa.000029. Crutzen P (2003) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7:443–472. https://doi.org/10.1146/annurev.ea.07.050179.002303 Decina S, Templer P, Hutyra L, Gately C, Rao P (2017) Variability, drivers, and effects of atmospheric nitrogen inputs across an urban area: emerging patterns among human activities, the atmosphere, and soils. Sci Total Environ 609:1524–1534. https://doi.org/10.1016/j.scitotenv.2017.07.166 Draxler R, Hess G (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308 Duce R, Liss P, Merrill J, Atlas E, Buat-Menard P, Hicks B, Miller J, Prospero J, Arimoto R, Church T, Ellis WG, Galloway J, Hansen L, Jickells T, Knap A, Reinhardt K, Schneider B, Soudine A, Tokos J, Zhou M (1991) The atmospheric input of trace species to the World ocean. Global Biogeochem Cycles 5:193–259. https://doi.org/10.1029/91GB01778 Evans M, Jacob D (2005) Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. Geophys Res Lett 32:9. https://doi.org/10.1029/2005GL022469 Fu G, Wang J, Yan M (2016) Anatomy of Tianjin Port fire and explosion: Process and causes. Process Saf Prog 35. https://doi.org/10.1002/prs.11837. Galloway J, Dentener F, Boyer E, Howarth R, Seitzinger S, Asner G, Cleveland C, Green P, Holland E, Karl D, Michaels A, Porter J, Townsend A, Vöosmarty C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. https://doi.org/10.1007/s10533-004-0370-0 Galloway J, Townsend A, Erisman JW, Bekunda M, Cai Z, Freney J, Martinelli L, Seitzinger S, Sutton M (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674 Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosystems 57:1–12. https://doi.org/10.1023/A:1009832221034 Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, Fuertes E, Gruzieva O, Heinrich J, Hoffmann B, de Jongste JC, Klümper C, Koppelman GH, Korek M, Krämer U, Maier D, Melén E, Pershagen G, Postma DS, Standl M, von Berg A, Anto JM, Bousquet J, Keil T, Smit HA, Brunekreef B (2015) Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med 3:933–942. https://doi.org/10.1016/S2213-2600(15)00426-9 Griffith S, Huang XHH, Louie PKK, Yu J (2015) Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: insights gained from two years of online measurements in Hong Kong. Atmos. Environ. 122. https://doi.org/10.1016/j.atmosenv.2015.02.009. Guo H, Han F, Wang Z, Pardu J, Zhang H (2018) Deposition of sulfur and nitrogen components in Louisiana in August, 2011. Sci Total Environ 636:124–133. https://doi.org/10.1016/j.scitotenv.2018.04.258 Hamilton D, Moore J, Arneth A, Bond T, Carslaw K, Hantson S, Ito A, Kaplan J, Lindsay K, Nieradzik L, Rathod S, Scanza R, Mahowald N (2020a) Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the anthropocene. Global Biogeochem. Cycles 34, e2019GB006448. https://doi.org/10.1029/2019GB006448. Hamilton D, Scanza R, Rathod S, Bond T, Kok J, Li L, Matsui H, Mahowald N (2020b) Recent (1980‐to‐2015) trends and variability in daily‐to‐interannual soluble iron deposition from dust, fire, and anthropogenic sources. Geophys Res Lett 47(17):e2020GL089688. https://doi.org/10.1029/2020GL089688 Holtgrieve G, Schindler D, Hobbs W, Leavitt P, Ward E, Bunting L, Chen G, Finney B, Gregory-Eaves I, Holmgren S, Lisac M, Lisi P, Nydick K, Rogers L, Saros J, Selbie D, Shapley M, Walsh P, Wolfe A (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548. https://doi.org/10.1126/science.1212267 Huabing K, Gong S, He J, Zhou C, Zhang L, Zhou Y (2019) Spatial and temporal distribution of open biomass burning in China from 2013 to 2017. Atmos Environ 210:156–165. https://doi.org/10.1016/j.atmosenv.2019.04.039 Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao J, Han Y, Daellenbach K, Slowik J, Platt S, Canonaco F, Zotter P, Wolf R, Pieber S, Bruns E, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Prevot A(2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222. https://doi.org/10.1038/nature13774 Ionov D, Poberovskii A (2019) Observations of urban NOx plume dispersion using mobile and satellite DOAS measurements around the megacity of St.Petersburg (Russia). Int J Remote Sens 40:719–733. https://doi.org/10.1080/01431161.2018.1519274 Jaeglé L, Shah V, Thornton J, Lopez-Hilfiker F, Lee B, McDuffie E, Fibiger D, Brown S, Veres P, Sparks T, Ebben C, Wooldridge P, Kenagy H, Cohen R, Weinheimer A, Campos T, Montzka D, Digangi J, Wolfe G, Weber R (2018) Nitrogen oxides emissions, chemistry, deposition, and export over the northeast United States during the winter aircraft campaign. J Geophys Res Atmos 123(21):12,368–12,393. https://doi.org/10.1029/2018JD029133 Jiang B, Ji Q, Teng G (2018) Using GOCI to detect the diffusion of pollution after the TianJin harbour explosion. Int J Remote Sens 39:1744–1753. https://doi.org/10.1080/01431161.2017.1415479 Jiang Q, Christakos G (2018) Space-time mapping of ground-level PM2.5 and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data. Air Qual Atmos Heal 11:23–33. https://doi.org/10.1007/s11869-017-0514-8 Jones R, Lehr W, Simecek-Beatty , Reynolds M (2013) ALOHA (Areal Locations of Hazardous Atmospheres) 5.4.4 : technical documentation. NOAA technical memorandum NOS-OR&R 43 Khanmohamadi M, Bagheri M, Khademi N, Ghannadpour SF (2018) A security vulnerability analysis model for dangerous goods transportation by rail – case study: chlorine transportation in Texas-Illinois. Saf Sci 110:230–241. https://doi.org/10.1016/j.ssci.2018.04.026 Kimbrough S, Owe RC, Snyder M, Richmond-Bryant J (2017) NO to NO2 Conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada Near-Road Field Measurements. Atmos Environ (1994) 165:23–24. https://doi.org/10.1016/j.atmosenv.2017.06.027 Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB, Puchalski MA, Gay DA, Collett JL (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proc Natl Acad Sci 113:5874–5879. https://doi.org/10.1073/pnas.1525736113 Link M, Kim J, Park G, Lee T, Park T, Babar , Sung K, Kim P, Kang S, Kim J, Choi Y, Son J, Lim HJ, Farmer D (2017) Elevated production of NH4NO3 from the photochemical processing of vehicle exhaust: implications for air quality in the Seoul Metropolitan Region. Atmos. Environ. 156. https://doi.org/10.1016/j.atmosenv.2017.02.031 Liu X, Xu W, Duan L, Pan Y, Xiankai L, Zhang L, Wu Z, Wang X, Zhang Y, Shen J, Song L, Song W, Tang A, Zhang Y, Zhang X, Collett J (2017) Atmospheric nitrogen emission, deposition, and air quality impacts in china: an overview. Curr Pollut Reports 3:65–77. https://doi.org/10.1007/s40726-017-0053-9 Masiol M, Squizzato S, Formenton G, Harrison R, Agostinelli C (2017) Air quality across a European hotspot: spatial gradients, seasonality, diurnal cycles and trends in the Veneto region. NE Italy Sci Total Environ 576:210–224. https://doi.org/10.1016/j.scitotenv.2016.10.042 Matikolaei S, Jamshidi H, Samimi A (2017) Characterizing the effect of traffic density on ambient CO, NO2, and PM2.5 in Tehran, Iran: an hourly land-use regression model. Transp Lett 11:1–11. https://doi.org/10.1080/19427867.2017.1385201 Negovanovic M, Kricak L, Milanović DN, Simic N (2015) Ammonium nitrate explosion hazards. Podzemn Rad 2015:49–63. https://doi.org/10.5937/podrad1527049N Nioh E (2015) Health hazards of mobile phones and towers. Work an off News Lett ENVIS NIOH 10:1–8 NOAA (2016) Emergency Response Planning Guidelines (ERPGs) Office of Response and Restoration. NOAA’s Ocean Service Orozco JL, Caneghem J, Hens L, González L, Lugo R, Díaz S, Pedroso I (2019) Assessment of an ammonia incident in the industrial area of Matanzas. J Clean Prod 222 https://doi.org/10.1016/j.jclepro.2019.03.024. Pan Y (2020) Toward a better understanding of cascading consequences of atmospheric reactive nitrogen along its transport pathway. Atmos Ocean Sci Lett 13:179–181. https://doi.org/10.1080/16742834.2020.1750752 Patel P, Sohani N (2015) Hazard evaluation using aloha tool in storage area of an oil refinery. Int J Res Eng Technol 4:204–209 Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215. https://doi.org/10.1111/j.1365-2486.2011.02590.x Podrez M (2015) An update to the ambient ratio method for 1-h NO2 air quality standards dispersion modeling. Atmos Environ 103 https://doi.org/10.1016/j.atmosenv.2014.12.021 Qin M, Wang X, Hu Y, Huang X, He L, Zhong L, Song Y, Hu M, Zhang Y (2015) Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: diagnostic analysis using the Community Multiscale Air Quality model. Atmos Environ 112. https://doi.org/10.1016/j.atmosenv.2015.04.027. Rahman N, Ansary MA, Islam I (2015) GIS based mapping of vulnerability to earthquake and fire hazard in Dhaka city. Bangladesh Int J Disaster Risk Reduct 13:291–300. https://doi.org/10.1016/j.ijdrr.2015.07.003 Rahmani AR, Leili M, Azarian G, Poormohammadi A (2020) Sampling and detection of corona viruses in air: a mini review. Sci Total Environ 740:140207. https://doi.org/10.1016/j.scitotenv.2020.140207 Rajeev K, Soman S, Renjith V, George P (2019) Human vulnerability mapping of chemical accidents in major industrial units in Kerala, India for better disaster mitigation. Int J Disaster Risk Reduct 39:101247. https://doi.org/10.1016/j.ijdrr.2019.101247 Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985 Sandström T (1995) Respiratory effects of air pollutants: experimental studies in humans. Eur Respir J 8:976–995 Seo J, Kim JY, Youn D, Lee JY, Kim H, Lim YB, Kim Y, Jin HC (2017) On the multiday haze in the Asian continental outflow: the important role of synoptic conditions combined with regional and local sources. Atmos Chem Phys 17:9311–9332. https://doi.org/10.5194/acp-17-9311-2017 Seo J, Park DSR, Kim JY, Youn D, Lim YB, Kim Y (2018) Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea. Atmos Chem Phys 18:16121–16137. https://doi.org/10.5194/acp-18-16121-2018 Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull Am Meteorol Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 Streets D, Bond T, Carmichael G, Fernandes S, Fu Q, He D, Klimont Z, Nelson S, Tsai NY, Wang M, Woo J, Yarber K (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108. https://doi.org/10.1029/2002jd003093 Tan W, Du H, Liu L, Su T, Liu X (2017) Experimental and numerical study of ammonia leakage and dispersion in a food factory. J Loss Prev Process Ind 47:129–139. https://doi.org/10.1016/j.jlp.2017.03.005 Tavallali P, Gharibi H, Singhal M, Schweizer D, Cisneros R (2020) A multi-pollutant model: a method suitable for studying complex relationships in environmental epidemiology. Air Qual Atmos Heal 13. https://doi.org/10.1007/s11869-020-00829-3. Taylor J, Sillitto SGP (1949) Flame and Explosion Phenomena, in: Third International Symposium on Combustion. Baltimore: Williams & Wilkins. Thornton J, Kercher J, Riedel T, Wagner N, Cozic J, Holloway J, Dubé W, Wolfe G, Quinn P, Middlebrook A, Alexander B, Brown S (2010) A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464:271–274. https://doi.org/10.1038/nature08905 Tie X, Brasseur G, Emmons L, Horowitz L, Kinnison D (2001) Effects of aerosols on tropospheric oxidants: A global model study. J Geophys Res 106:22931–22964. https://doi.org/10.1029/2001JD900206 Tonse S, Brown N, Harley R, Jin L (2008) A process-analysis based study of the ozone weekend effect. Atmos Environ - ATMOS Env 42:7728–7736. https://doi.org/10.1016/j.atmosenv.2008.05.061 Tseng JM, Su TS, Kuo CY (2012) Consequence evaluation of toxic chemical releases by ALOHA. Procedia Eng 45:384–389. https://doi.org/10.1016/j.proeng.2012.08.175 Verma P, Sagar R (2020) Effect of nitrogen (N) deposition on soil-N processes: a holistic approach. Sci Rep 10. https://doi.org/10.1038/s41598-020-67368-w Waldrop M, Zak D, Sinsabaugh R, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177. https://doi.org/10.1890/03-5120 Wang Y, Zhang Q, He H, Zhang Q, Chai L (2013) Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys 13:2635–2652. https://doi.org/10.5194/acp-13-2635-2013 Warmiński K, Bęś A (2018) Atmospheric factors affecting a decrease in the night-time concentrations of tropospheric ozone in a low-polluted urban area. Water, Air, Soil Pollut 229:350. https://doi.org/10.1007/s11270-018-4012-x Wothe (Henschel) S, Le Tertre A, Atkinson R, Querol X, Pandolfi M, Zeka A, Haluza D, Analitis A, Katsouyanni K, Bouland C, Pascal M, Medina S, Goodman P (2015) Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010. Atmos. Environ. 117:234–241. https://doi.org/10.1016/j.atmosenv.2015.07.013 Xu W, Zhao Y, Liu X, Dore AJ, Zhang L, Liu L, Cheng M (2018) Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution. Environ Pollut 232:546–555. https://doi.org/10.1016/j.envpol.2017.09.086 Yeo MK, Han TH, Kim SS, Lee JA, Park HG (2017) Chemical management policies and a distribution model for chemical accidents. Mol Cell Toxicol 13:361–371. https://doi.org/10.1007/s13273-017-0040-7 Yu H, Lee WK, Sohn JR (2020) Risk hotspot of chemical accidents based on spatial analysis in Ulsan. South Korea Saf Sci 123:104544. https://doi.org/10.1016/j.ssci.2019.104544 Yusefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, Hassanvand MS (2020) Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci Rep 10. https://doi.org/10.1038/s41598-019-56578-6. Zheng G, Duan F, Su H, Ma Y, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y, He K (2015) Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys 15:2969–2983. https://doi.org/10.5194/acp-15-2969-2015 Zhou L, Zhou X, Shao J, Nie Y, He Y, Jiang L, Wu Z, Hosseini Bai S (2016) Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob Chang Biol 22:3157–3169. https://doi.org/10.1111/gcb.13253 Zong Z, Sun Z, Tan Y, Tian C, Qu L, Ji L (2019) Impact of an accidental explosion in Tianjin Port on enhanced atmospheric nitrogen deposition over the Bohai Sea inferred from aerosol nitrate dual isotopes. Atmos Ocean Sci Lett 1–7. https://doi.org/10.1080/16742834.2019.1682926.