Immuntherapie bei Kopf-Hals-Plattenepithelkarzinomen

best practice onkologie - Tập 16 - Trang 520-527 - 2021
N. Brix1, L. Dunn2, T. Seiwert3, C. Belka1,4,5, K. Lauber1,4,5
1Klinik für Strahlentherapie und Radioonkologie, LMU Klinikum der Universität München, München, Deutschland
2Memorial Sloan-Kettering Cancer Center, New York, USA
3Johns Hopkins Medicine, Baltimore, USA.
4Klinische Kooperationsgruppe „Personalisierte Radiotherapie von Kopf-Hals-Tumoren“, Helmholtz Zentrum München, Neuherberg, Deutschland
5Deutsches Konsortium für translationale Krebsforschung (DKTK), Partnerstandort München, München, Deutschland

Tóm tắt

Das Therapieportfolio für rekurrente und/oder metastasierte Kopf-Hals-Plattenepithelkarzinome („Head and neck squamous cell carcinoma“ [HNSCC]) hat sich mit der klinischen Implementierung der Immuntherapie erweitert: Die einzige molekular zielgerichtete Therapieoption bis zum Jahr 2016 war die Epidermal-growth-factor-receptor(EGFR)-Blockade. Inzwischen ist jedoch die Immuncheckpointinhibition Teil der Erstlinientherapie beim rekurrenten oder metastasierten HNSCC. Untersucht wurde, inwieweit bei der Immuntherapie des HNSCC abskopale Effekte der Strahlentherapie, ausgeprägte Synergien mit Chemotherapie sowie Pseudoprogressionsphänomene auftreten. Literaturrecherche unter Berücksichtigung aktueller klinischer Studien zur Immuntherapie von HNSCC wie auch präklinischer Arbeiten über die zugrunde liegenden biologischen Mechanismen. Wie bei anderen Tumorentitäten bereits beobachtet, treten auch bei der Therapie des rekurrenten und/oder metastasierten HNSCC synergistische Effekte bei Kombination der Immuntherapie mit Radio- und/oder Chemotherapie in der Klinik auf. Ursächlich hierfür ist eine (Re‑)Aktivierung der körpereigenen Antitumorimmunantwort. In Einzelfällen tritt dies in der Bildgebung in Form einer Pseudoprogression in Erscheinung. Verlässliche Biomarker für die genannten Phänomene sind klinisch bisher nicht etabliert. Auch beim rekurrenten und/oder metastasierten HNSCC werden sich systemische Effekte der Radiochemoimmuntherapie in der Klinik mehren. Entsprechend wird die Suche nach Biomarkern für abskopale Effekte der Strahlentherapie und unerwartet starke Synergien mit Chemotherapeutika unter Immuntherapie sowie für Pseudoprogression an Bedeutung gewinnen.

Tài liệu tham khảo

Ariyan CE, Brady MS, Siegelbaum RH et al (2018) Robust antitumor responses result from local chemotherapy and CTLA‑4 blockade. Cancer Immunol Res 6:189–200 Belka C, Ottinger H, Kreuzfelder E et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204 Bensch F, Lamberts LE, Smeenk MM et al (2017) (89)Zr-lumretuzumab PET imaging before and during HER3 antibody lumretuzumab treatment in patients with solid tumors. Clin Cancer Res 23:6128–6137 Bernier J, Domenge C, Ozsahin M et al (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350:1945–1952 Bonner JA, Harari PM, Giralt J et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5‑year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–28 Borcoman E, Nandikolla A, Long G et al (2018) Patterns of response and progression to immunotherapy. Am Soc Clin Oncol Educ Book 38:169–178 Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639 Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135 Brix N, Tiefenthaller A, Anders H et al (2017) Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol Rev 280:249–279 Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496 Burtness B, Harrington KJ, Greil R et al (2019) Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394(10212):1915–1192 Camphausen K, Moses MA, Menard C et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63:1990–1993 The Cancer Genome Atlas Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582 Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543 Chow LQM, Haddad R, Gupta S et al (2016) Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol 34:3838–3845 Cohen EEW, Soulieres D, Le Tourneau C et al (2019) Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393:156–167 Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852 Di Giacomo AM, Danielli R, Guidoboni M et al (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA‑4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58:1297–1306 Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247 Ferris RL (2015) Immunology and immunotherapy of head and neck cancer. J Clin Oncol 33:3293–3304 Ferris RL, Blumenschein G Jr, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867 Formenti SC, Demaria S (2012) Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 84:879–880 Formenti SC, Rudqvist NP, Golden E et al (2018) Radiotherapy induces responses of lung cancer to CTLA‑4 blockade. Nat Med 24:1845–1851 Gandara DR, Von Pawel J, Mazieres J et al (2018) Atezolizumab treatment beyond progression in advanced NSCLC: results from the randomized, phase III OAK study. J Thorac Oncol 13:1906–1918 George S, Motzer RJ, Hammers HJ et al (2016) Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: a subgroup analysis of a randomized clinical trial. JAMA Oncol 2:1179–1186 Heinhuis KM, Ros W, Kok M et al (2019) Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol 30:219–235 Higashikawa K, Yagi K, Watanabe K et al (2014) 64Cu-DOTA-anti-CTLA‑4 mAb enabled PET visualization of CTLA‑4 on the T‑cell infiltrating tumor tissues. PLoS One 9:e109866 Hodi FS, Hwu WJ, Kefford R et al (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517 Hodi FS, Sznol M, Kluger HM et al (2014) Long-term survival of ipilimumab-naive patients (pts) with advanced melanoma (MEL) treated with nivolumab (anti-PD‑1, BMS-936558, ONO-4538) in a phase I trial. J Clin Oncol 32:9002–9002 Kazandjian D, Keegan P, Suzman DL et al (2017) Characterization of outcomes in patients with metastatic non-small cell lung cancer treated with programmed cell death protein 1 inhibitors past RECIST version 1.1-defined disease progression in clinical trials. Semin Oncol 44:3–7 Kong BY, Menzies AM, Saunders CA et al (2016) Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD‑1 therapy. Pigment Cell Melanoma Res 29:572–577 Lauber K, Dunn L (2019) Immunotherapy mythbusters in head and neck cancer: the abscopal effect and pseudoprogression. Am Soc Clin Oncol Educ Book 39:352–363 Lauber K, Ernst A, Orth M et al (2012) Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol 2:116 Lesterhuis WJ, Punt CJ, Hato SV et al (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 121:3100–3108 Lim JY, Gerber SA, Murphy SP et al (2014) Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother 63:259–271 Long GV, Weber JS, Larkin J et al (2017) Nivolumab for patients with advanced melanoma treated beyond progression: analysis of 2 phase 3 clinical trials. JAMA Oncol 3:1511–1519 Luo R, Firat E, Gaedicke S et al (2019) Cisplatin facilitates radiation-induced abscopal effects in conjunction with PD‑1 checkpoint blockade through CXCR3/CXCL10-mediated T‑cell recruitment. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1344 Mathios D, Kim JE, Mangraviti A et al (2016) Anti-PD‑1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med 8:370ra180 McCulloch HD (1908) On the analogy between spontaneous recoveries from cancer and the specific immunity induced by x ray irradiations of the lymphatic glands involved. Br Med J 2:1146–1148 Minn AJ (2015) Interferons and the immunogenic effects of cancer therapy. Trends Immunol 36:725–737 Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26:234–241 Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357 Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD‑1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265 Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330 Sato-Kaneko F, Yao S, Ahmadi A et al (2017) Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight 2(18):93397. https://doi.org/10.1172/jci.insight.93397 Seiwert TY, Burtness B, Mehra R et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17:956–965 Seymour L, Bogaerts J, Perrone A et al (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18:e143–e152 Shinde A, Novak J, Freeman ML et al (2019) Induction of the abscopal effect with immunotherapy and palliative radiation in metastatic head and neck squamous cell carcinoma: a case report and review of the literature. Cureus 11:e4201 Showalter A, Limaye A, Oyer JL et al (2017) Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97:123–132 Sistigu A, Yamazaki T, Vacchelli E et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301–1309 Solinas C, Porcu M, Hlavata Z et al (2017) Critical features and challenges associated with imaging in patients undergoing cancer immunotherapy. Crit Rev Oncol Hematol 120:13–21 Szturz P, Vermorken JB (2017) Immunotherapy in head and neck cancer: aiming at EXTREME precision. BMC Med 15:110 Takeshima T, Chamoto K, Wakita D et al (2010) Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 70:2697–2706 Tran L, Allen CT, Xiao R et al (2017) Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol Res 5:1141–1151 Vermorken JB, Mesia R, Rivera F et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127 Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA‑4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384