Immunotherapy in myasthenia gravis in the era of biologics

Nature Reviews Neurology - Tập 15 Số 2 - Trang 113-124 - 2019
Marinos C. Dalakas1
1Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gilhus, N. E. Myasthenia gravis. N. Engl. J. Med. 375, 2570–2581 (2016).

Dalakas, M. C. Future perspectives in target-specific immunotherapies of myasthenia gravis. Therap. Adv. Neurol. Disord. 8, 316–327 (2015).

Guptil, J. T., Soni, M. & Meriggioli, M. N. Current treatment, emerging translational therapies, and new therapeutic targets for autoimmune myasthenia gravis. Neurotherapeutics 13, 118–131 (2016).

Drachman, D. B. Myasthenia gravis. Semin. Neurol. 36, 419–424 (2016). A useful overview from a very experienced clinician and MG scholar.

Sanders, D. B. et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 87, 419–425 (2016). An important effort to establish consensus criteria in the treatment of MG.

Dalakas, M. C. Treating mysasthenia on a consesus guide: helpful and challenging but still unfinished business. Neurology 87, 1–2 (2016). An objective critique of the proposed consensus criteria in the MG management.

Melzer, N. et al. Clinical features, pathogenesis and treatment of myasthenia gravis: a supplement to the guidelines of the German Neurological Society. J. Neurol. 263, 1473–1494 (2016).

Carr, A. S., Cardwell, C. R., McCarron, P. O. & McConville, J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 10, 46 (2010).

Gilhus, N. E. & Verschuuren, J. J. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 14, 1023–1036 (2015).

Evoli, A. Myasthenia gravis: new developments in research and treatment. Curr. Opin. Neurol. 30, 464–470 (2017).

Benatar, M. et al. Efficacy of prednisone for the treatment of ocular myasthenia (Epitome): a randomized controlled trial. Muscle Nerve 53, 363–369 (2016).

Alkahawajah, N. M. & Oger, J. Treatment of myasthenia gravis in the aged. Drugs Aging 32, 689–697 (2015).

Sih, M. et al. Head-drop: a frequent feature in late onset myasthenia gravis. Muscle Nerve 56, 441–444 (2017).

Phillips, W. D. & Vincent, A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res 5, 1513 (2016).

Vincent, A. & Rothwell, P. Myasthenia gravis. Autoimmunity 37, 317–319 (2004).

Evoli, A. et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126, 2304–2311 (2003).

Sanders, D. B., El-Salem, K., Massey, J. M., McConville, J. & Vincent, A. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 60, 1978–1980 (2003).

Kubiszewska, J. et al. Prevalence and impact of autoimmune thyroid disease on myasthenia gravis course. Brain Behav. 6, e00537 (2016).

Leite, M. I. et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicenter study of 16 patients. Neurology 78, 1601–1607 (2012).

Dalakas, M. C. Novel future therapeutic options in myasthenia gravis. Autoimmun. Rev. 12, 936–941 (2013).

Dalakas, M. C. Biologics and other novel approaches and new therapeutic options in myasthenia gravis: a view to the future. Ann. NY Acad. Sci. 1274, 168–175 (2012).

Molko, N. et al. Zika virus infection and myasthenia gravis: report of 2 cases. Neurology 88, 1097–1098 (2017).

Leis, A. A., Szatmary, G., Ross, M. A. & Stokic, D. S. West nile virus infection and myasthenia gravis. Muscle Nerve 49, 26–29 (2014).

Yi, S. J., Guptil, J. T., Stathopoulos, P., Nowak, R. J. & O’Connor, K. C. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 57, 172–184 (2018). An up-to-date review on B cells in MG, including excellent B cell molecular immunology.

Drachman, D. B. Comment: methotrexate for patients with generalized myasthenia gravis. Neurology 87, 63 (2016).

Palace, J., Newsom-Davis, J. & Lecky, B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Neurology 50, 1778–1783 (1998).

Meriggioli, M. N., Rowin, J., Richman, J. G. & Leurgans, S. Mycophenolate mofetil for myasthenia gravis: a double-blind, placebo-controlled pilot study. Ann. NY Acad. Sci. 998, 494–499 (2003).

Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology 71, 394–399 (2008).

Burns, T. M. et al. Two steps forward, one step back: mycophenolate mofetil treatment for myasthenia gravis in the United States. Muscle Nerve 51, 635–637 (2015). A practical commentary on the use of mycophenolate in MG.

Oskarsson, B., Rocke, D. M., Dengel, K. & Richman, D. P. Myasthenia gravis exacerbation after discontinuing mycophenolate: a single-center cohort study. Neurology 86, 1159 (2016).

Hobson-Webb, L. D. et al. Can Mycophenolate mofetil be tapered safely in myasthenia gravis? A retrospective multicenter analysis. Muscle Nerve 52, 211–215 (2015).

Tindall, R. S., Phillips, J. T., Rollins, J. A., Wells, L. & Hall, K. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann. NY Acad. Sci. 681, 539–551 (1993).

Tindall, R. S. et al. Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N. Engl. J. Med. 316, 719–724 (1987).

Cruz, J. L., Wolff, M. L., Vanderman, A. J. & Brown, J. N. The emerging role of Tacrolimus in myasthenia gravis. Ther. Adv. Neurol. Disord. 8, 92–103 (2015).

Yoshikawa, H. et al. Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 82, 970–977 (2011).

Zhou, L. et al. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China. Ther. Adv. Neurol. Disord. 10, 315–325 (2017).

Pasnoor, M. et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology 87, 1–8 (2016).

Patwa, H. S., Chaudhry, V., Katzberg, H., Rae-Grant, A. D. & So, Y. T. Evidence-based guideline: intravenous immunoglobulin in the treatment of neuromuscular disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 78, 1009–1015 (2012).

Kaminski, H. J., Cutter, G. & Ruff, R. Practice parameters and focusing research: plasma exchange for myasthenia gravis. Muscle Nerve 43, 625–626 (2011). A commentary about the practical use of plasmapheresis in MG.

Gajdos, P., Chevret, S. & Toyka, K. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst. Rev. 1, CD002277 (2008).

Gajdos, P., Chevret, S., Clair, B., Tranchant, C. & Chastang, C. Clinical trial of plasma exchange and high dose immunoglobulin inmyasthenia gravis. Ann. Neurol. 41, 789–796 (1997).

Gajdos, P. et al. Treatment of myasthenia gravis exacerbation with intravenous immunoglobulin: a randomized double-blind clinical trial. Arch. Neurol. 62, 1689–1693 (2005).

Dalakas, M. C. The use of intravenous immunoglobulin in the treatment of autoimmune neurological disorders: evidence-based indications and safety profile. Pharmacol. Ther. 102, 177–193 (2004).

Dalakas, M. C. in Myasthenia Gravis: Disease Mechanisms and Immune Intervention (ed. Christados, P.) 89–102 (Linus Publications, 2010).

Hellmann, M. A., Mosberg-Galili, R., Lotan, I. & Steiner, I. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J. Neurol. Sci. 338, 39–42 (2014).

Dalakas, M. C. IVIg in the chronic management of myasthenia gravis: is it enough for your money? J. Neurol. Sci. 338, 1–2 (2014). A commentary about chronic treatment of MG with IVIg and the need for controlled studies.

US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02473952?term=NCT02473952&rank=1 (2018).

US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02473965?term=NCT02473965&rank=1 (2018).

Bourque, P. R., Pringle, C. E., Cameron, W., Cowan, J. & Chardon, J. W. Subcutaneous immunoglobulin therapy in the chronic management of myasthenia gravis: a retrospective cohort study. PLOS ONE 11, e0159993 (2016).

Beecher, G., Anderson, D. & Siddiqi, Z. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology 89, 1–7 (2017). A useful study that describes the experience of treating MG with subcutaneous IgG.

Gronseth, G. S. & Barohn, R. J. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 55, 7–15 (2000).

Wolfe, G. I. et al. Randomized trial of thymectomy in myasthenia gravis. N. Engl. J. Med. 375, 511–522 (2016). A monumental controlled trial on the usefulness of thymectomy in MG by leading clinicians.

Ropper, A. H. RetroSternal — looking back at thymectomy for myasthenia gravis. N. Engl. J. Med. 375, 576–577 (2016).

Howard, J. F. et al. A randomized, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve 48, 76–84 (2013).

Howard, J. F. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis (REGAIN): a phase 3, randomised, doubleblind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017). An important, well-conducted controlled study that led to approval of eculizumab as the first FDA-approved drug for MG.

Suh, J., Goldstein, J. M. & Nowak, R. J. Clinical characteristics of refractory myasthenia gravis patients. Yale J. Biol. Med. 86, 255–226 (2013).

Dalakas, M. C. B cells as therapeutic targets in autoimmune neurological disorders. Nat. Clin. Pract. Neurol. 4, 557–567 (2008).

Illa, I. et al. Sustained response to rituximab in anti-AChR and anti-MuSK positive myasthenia gravis patients. J. Neuroimmunol. 201–202, 90–94 (2008).

Nowak, R. J., Dicapua, D. B., Zebardast, N. & Goldstein, J. M. Response of patients with refractory myasthenia gravis to rituximab: a retrospective study. Ther. Adv. Neurol. Disord. 4, 259–266 (2011).

Iorio, R., Damato, V., Alboini, P. E. & Evoli, A. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J. Neurol. 262, 1115–1119 (2015).

Tandan, R., Hehir, M. K., Waheed, W. & Howard, D. B. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 56, 185–196 (2017).

Afanasiev, V. et al. Resistant myasthenia gravis and rituximab: a monocentric retrospective study of 28 patients. Neuromuscul. Disord. 27, 251–258 (2017).

Stieglbauer, K., Pihler, R. & Topakian, R. 10-year-outcomes after rituximab for myasthenia gravis: efficacy, safety, costs of in hospital care, and impact on childbearing potential. J. Neurol. Sci. 375, 241–244 (2017).

Díaz-Manera, J. et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 78, 189–193 (2012).

Hehir, M. K. et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology 89, 1069–1077 (2017). A blinded study that demonstrates the usefulness of rituximab in anti-MuSK MG.

Kosmidis, M. L. & Dalakas, M. C. Practical considerations on the use of rituximab in autoimmune neurological disorders. Ther. Adv. Neurol. Disord. 3, 93–105 (2010).

Kim, S. H., Huh, S. Y., Lee, S. J., Joung, A. & Kim, H. J. A. 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

Dalakas, M. C. et al. Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Ann. Neurol. 65, 286–293 (2009).

Lebrun, C. et al. Therapeutic target of memory B cells depletion helps to tailor administration frequency of rituximab in myasthenia gravis J. Neuroimmunol. 298, 79–81 (2016).

Nowak, R. J. et al. B cell targeted treatment in myasthenia gravis (BeatMG): a phase 2 trial of rituximab in myasthenia gravis. Neurology 90, e2182–e2194 (2018).

Dalakas, M. C. Neurological complications of immune check-point inhibitors: what happens when you “take the brakes-off” the immune system. Ther. Adv. Neurol. Disord. https://doi.org/10.1177/1756286418799864 (2018).

Nguyen, B. H., Kuo, J., Budiman, A., Christie, H. & Ali, S. Two cases of clinical myasthenia gravis associated with pembrolizumab use in responding melanoma patients. Melanoma Res. 27, 152–154 (2017).

Gonzalez, N. L., Puwanant, A., Lu, A., Marks, S. M. & Živkovic´, S. A. Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul. Disord. 27, 266–268 (2017).

Lau, K. H., Kumar, A., Yang, I. H. & Nowak, R. J. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve 54, 157–161 (2016).

Suzuki, S. et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89, 1–8 (2017).

Fee, D. B. & Kasarskis, E. J. Myasthenia gravis associated with etanercept therapy. Muscle Nerve. 39, 866–870 (2009).

Tak, P. L. & Kalden, J. R. Advances in rheumatology: new targeted therapeutics. Arthritis Res. Ther. 13 (Suppl. 1), S5 (2011).

Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

Alboini, P. E., Evoli, A., Damato, V., Iorio, R. & Bartoccioni, E. Remisssion of myasthenia gravis with MuSK antibodies during ruxolitinib treatment. Muscle Nerve 55, E12–E13 (2017).

Dalakas, M. C. Inhibition of B cell functions: implications for neurology. Neurology 70, 2252–2260 (2008).

Ragheb, S. A potential role for B cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch. Neurol. 65, 1358–1362 (2008).

Mantegazza, R. & Antoni, C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther. Adv. Neurol. Dis. 11, 1756285617749134 (2018).

Hewett, K. et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology 90, e1425–e1434 (2018). A controlled study on the effect of belimumab in MG.

Greenfield, A. L. & Hauser, S. L. B cell therapy for multiple sclerosis: entering an era. Ann. Neurol. 83, 13–26 (2018). An excellent review of B cell therapies in multiple sclerosis and implications in other autoimmune neurological diseases.

Rakocevic, G., Martinez-Outschoorn, U. & Dalakas, M. C. Obinutuzumab, a potent anti-B cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy. Neurol. Neuroimmunol. Neuroinflamm. 5, e460 (2018).

Russell, A. et al. Obinutuzumab plus clorambucil in a patient with severe myasthenia gravis and chronic lymphocytic leukemia J. Neuromuscul. Dis. 4, 251–257 (2017).

Tüzün, E., Huda, R. & Christadoss, P. Complement and cytokine based therapeutic strategies in myasthenia gravis. J. Autoimmun. 37, 136–143 (2011).

Howard, J. F. Jr. Myasthenia gravis: the role of complement at the neuromuscular junction Ann. NY Acad. Sci. 1412, 113–128 (2018).

Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994). The first study to prove that IVIg works by inhibiting complement at the C3 level.

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03406507?term=NCT03406507&rank=1 (2018).

Dhodapkar, K. M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

Howard, J. F. et al. A double-blind placebo-controlled study to evaluate the safety and efficacy of FcRn antagonist ARGX-113 (efgartigimod) in generalized myasthenia gravis. Neurology 90, e2182–e2194 (2018).

Mu, L. et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology 128, e826–e836 (2009).

Roche, J. C. et al. Increased serum interleukin-17 levels in patients with Myasthenia gravis. Muscle Nerve 44, 278–280 (2011).

Jonsson, D. I., Pirskanen, R. & Piehl, F. Beneficial effect of tocilizumab in myasthenia gravis refractory to rituximab. Neuromuscul. Disord. 27, 565–568 (2017).

Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

Langley, R. G. et al. Secukinumab in plaque psoriasis — results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

Raggi, A., Leonardi, M. & Ayadi, R. Validation of the Italian version of the 15-item myasthenia gravis quality-of-life questionnaire. Muscle Nerve 56, 716–720 (2017).

Barnett, C., Brill, V., Kapral, M., Burns, T. M. & MG Composite and MG-QOL 15 Study Group. MG-ADL: still a relevant outcome measure. Muscle Nerve 44, 727–731 (2011).

Muppidi, S., Wolfe, G. I., Conaway, M., Burns, T. M. & MG Composite and MG-QOL 15 Study Group. MG-ADL: still a relevant outcome measure. Muscle Nerve 44, 727–731 (2011).

Burns, T. M. et al. The MGQOL15 for following the health-related quality of life of patients with myasthenia gravis. Muscle Nerve 43, 14–18 (2011).

Rahbek, M. A. et al. Exercise in myasthenia gravis: a feasibility study of aerobic and resistance training. Muscle Nerve 56, 700–709 (2017).