Immunosenescence is both functional/adaptive and dysfunctional/maladaptive

Springer Science and Business Media LLC - Tập 42 - Trang 521-536 - 2020
T. Fulop1,2, A. Larbi3, K. Hirokawa4, A. A. Cohen5, J. M. Witkowski6
1Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
2Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
3Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
4Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
5Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
6Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland

Tóm tắt

Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.

Tài liệu tham khảo

Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 41(2):145–151 Team CC-R (2020) Severe outcomes among patients with coronavirus disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep 69(12):343–346 Wu Z, Mc Googan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 323(13):1239–1242 Wilson N, Kvalsvig A, Barnard AT, Baker MG (2020) Case-fatality risk estimates for COVID-19 calculated by using a lag time for fatality. Emerg Infect Dis 26(6):1339–1441 Murthy S, Gomersall CD, Fowler RA (2020) Care for critically Ill patients with COVID-19. JAMA 323(15):1499–1500 https://doi.org/10.1001/jama.2020.3633 Fülöp T, Dupuis G, Witkowski JM, Larbi A (2016) The role of immunosenescence in the development of age-related diseases. Rev Invest Clin. 68(2):84–91 Müller L, Di Benedetto S, Pawelec G (2019) The immune system and its dysregulation with aging. Subcell Biochem. 91:21–43 Weyand CM, Goronzy JJ (2016;13 Suppl) Aging of the immune system. mechanisms and therapeutic targets. Ann Am Thorac Soc 5(Suppl 5):S422–S428 Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 908:244–254 Buettner D, Skemp S (2016) Blue zones: lessons from the world's longest lived. Am J Lifestyle Med. 10(5):318–321 Huang Y, Mark JG (2017) Identification of a blue zone in a typical Chinese longevity region. Int J Environ Res Public Health. 14(6):571 Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 19(1):10–19 Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 17:2 Fülöp T, Larbi A, Witkowski JM (2019) Human inflammaging. Gerontology. 65(5):495–504 Ventura MT, Casciaro M, Gangemi S, Buquicchio R (2017) Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy. 15:21 Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A Review of Potential Options for Therapeutic Intervention. Front Immunol 10:2247 Oishi Y, Manabe I (2016) Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech Dis. 2:16018 Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci. 18(8):1742 Mishto M, Santoro A, Bellavista E, Bonafé M, Monti D, Franceschi C (2003) Immunoproteasomes and immunosenescence. Ageing Res Rev. 2(4):419–432 Pawelec G (2017) Does the human immune system ever really become "senescent"? F1000Res 6:F1000 Faculty Rev-1323 Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and 'garb-aging'. Trends Endocrinol Metab. 28(3):199–212 Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 14(10):576–590 Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165(Pt B):129–138 Xu W, Larbi A (2018) Immunity and inflammation: from Jekyll to Hyde. Exp Gerontol. 107:98–101 Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 8:1960 Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking aging to chronic disease. Cell. 159(4):709–713 Sierra F (2016) The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med. 6(4):a025163 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell. 153(6):1194–1217 Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC, ZOE-50 Study Group (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 372(22):2087–2096 Schwarz TF, Volpe S, Catteau G, Chlibek R, David MP, Richardus JH, Lal H, Oostvogels L, Pauksens K, Ravault S, Rombo L, Sonder G, Smetana J, Heineman T, Bastidas A (2018) Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum Vaccin Immunother. 14(6):1370–1377 Tsoupras A, Lordan R, Zabetakis I (2018) Inflammation, not cholesterol, is a cause of chronic disease. Nutrients. 10(5):604 Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G (2016) Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 64(2):111–126 Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2(10):1549–1558 Daste A, Domblides C, Gross-Goupil M, Chakiba C, Quivy A, Cochin V, de Mones E, Larmonier N, Soubeyran P, Ravaud A (2017) Immune checkpoint inhibitors and elderly people: A review. Eur J Cancer. 82:155–166 Pawelec G (2019) Does patient age influence anti-cancer immunity? Semin Immunopathol. 41(1):125–131 Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, Zhao H, Lester E, Wu T, Pang CH (2020) The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: recent advances, prevention, and treatment. Int J Environ Res Public Health. 17(7):2323 Spezzani V, Piunno A, Iselin HU (2020) Benign COVID-19 in an immunocompromised cancer patient - the case of a married couple. Swiss Med Wkly. 150:w20246 Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol. 8:982 Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D (2018) Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol. 40:83–94 Candore G, Caruso C, Colonna-Romano G (2010) Inflammation, genetic background and longevity. Biogerontology 11(5):565–573 Pera A, Campos C, López N, Hassouneh F, Alonso C, Tarazona R, Solana R (2015) Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 82(1):50–55 Fukushima Y, Minato N, Hattori M (2018) The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm Regen. 38:24 Fuentes E, Fuentes M, Alarcón M, Palomo I (2017) Immune system dysfunction in the elderly. An Acad Bras Cienc. 89(1):285–299 Boraschi D, Italiani P (2014) Immunosenescence and vaccine failure in the elderly: strategies for improving response. Immunol Lett 162(1 Pt B):346–353 Lanna A, Gomes DC, Muller-Durovic B, McDonnell T, Escors D, Gilroy DW, Lee JH, Karin M, Akbar AN (2017) A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 18(3):354–363 Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 9(1):4–9 Kennedy MA (2010) A brief review of the basics of immunology: the innate and adaptive response. Vet Clin North Am Small Anim Pract. 40(3):369–379 Robertson M (1998) Innate immunity. Curr Biol. 8(17):R595–R597 Yatim KM, Lakkis FG (2015) A brief journey through the immune system. Clin J Am Soc Nephrol. 10(7):1274–1281 Tomar N, De RK (2014) A brief outline of the immune system. Methods Mol Biol. 1184:3–12 McComb S, Thiriot A, Akache B, Krishnan L, Stark F (2019) Introduction to the immune system. Methods Mol Biol. 2024:1–24 Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B, Farronato G, Bruno A, Mortara L (2018) Macrophage polarization in chronic inflammatory diseases: killers or builders? J Immunol Res 2018:8917804 Hato T, Dagher PC (2015) How the innate immune system senses trouble and causes trouble. Clin J Am Soc Nephrol. 10(8):1459–1469 Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol. 12(3):204–212 Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867 Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, Fulop T (2018) Role of the peripheral innate immune system in the development of Alzheimer's disease. Exp Gerontol. 107:59–66 Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol. 40:17–35 Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109(43):17537–17542 Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG (2018 May) Innate immune memory: an evolutionary perspective. Immunol Rev. 283(1):21–40 Netea MG, van der Meer JW (2017) Trained immunity: an ancient way of remembering. Cell Host Microbe 21(3):297–300 Töpfer E, Boraschi D, Italiani P (2015) Innate immune memory: the latest frontier of adjuvanticity. J Immunol Res. 2015:478408 Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, Kumar V, Xavier RJ, Wijmenga C, Joosten LAB, Reusken CBEM, Benn CS, Aaby P, Koopmans MP, Stunnenberg HG, van Crevel R, Netea MG (2018) BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained tmmunity. Cell Host Microbe 23(1):89-100.e5 Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086 Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O'Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345(6204):1250684 van der Heijden CDCC, Noz MP, Joosten LAB, Netea MG, Riksen NP, Keating ST (2018) Epigenetics and trained immunity. Antioxid Redox Signal. 29(11):1023–1040 Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS, Arts RJW, Oosting M, Moorlag SJCFM, Groh LA, Zwaag J, Koch RM, Ter Horst R, Joosten LAB, Wijmenga C, Michelucci A, van der Poll T, Kox M, Pickkers P, Kumar V, Stunnenberg H, Netea MG (2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29(1):211-220.e5 Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 17(1):147–157 Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, Insall RH, Stockley RA, Lord JM (2014) Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 123(2):239–248 Bandaranayake T, Shaw AC (2016) Host resistance and immune aging. Clin Geriatr Med. 32(3):415–432 Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell. 3(4):217–226 Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol. 79(5):1061–1072 Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol. 84(4):932–939 Spittau B (2017) Aging microglia-phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Front Aging Neurosci 9:194 Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB (2019) Immunosenescence: a systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol. 124:110632 Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol. 125(2 Suppl 2):S33–S40 Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature. 517(7534):293–301 Mazzurana L, Rao A, Van Acker A, Mjösberg J (2018) The roles for innate lymphoid cells in the human immune system. Semin Immunopathol. 40(4):407–419 Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, Monticelli LA, Artis D (2019) Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50(2):505-519.e4 Nagasawa M, Spits H, Ros XR (2018) Innate lymphoid cells (ILCs): cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb Perspect Biol. 10(12):a030304 Ebbo M, Crinier A, Vély F, Vivier E (2017) Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 17(11):665–678 Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC, Singh A, Ahmed M, Nhamoyebonde S, Rangel-Moreno J, Ogongo P, Lu L, Ramsuran D, de la Luz Garcia-Hernandez M, K Ulland T, Darby M, Park E, Karim F, Melocchi L, Madansein R, Dullabh KJ, Dunlap M, Marin-Agudelo N, Ebihara T, Ndung'u T, Kaushal D, Pym AS, Kolls JK, Steyn A, Zúñiga J, Horsnell W, Yokoyama WM, Shalek AK, Kløverpris HN, Colonna M, Leslie A, Khader SA (2019) Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 570(7762):528–532 Ikeda A, Ogino T, Kayama H, Okuzaki D, Nishimura J, Fujino S, Miyoshi N, Takahashi H, Uemura M, Matsuda C, Yamamoto H, Takeda K, Mizushima T, Mori M, Doki Y (2020) Human NKp44+ group 3 innate lymphoid cells associate with tumor-associated tertiary lymphoid structures in colorectal cancer. Cancer Immunol Res 8(6):724–731 Kotas ME, Locksley RM (2018) Why innate lymphoid cells? Immunity. 48(6):1081–1090 Mangan BA, Dunne MR, O’Reilly VP, Dunne PJ, Exley MA, O’Shea D, Scotet E, Hogan AE, Doherty DG (2013) CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J Immunol Baltim Md 1950 191:30–34 Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J et al (2013) CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14:1137–1145 Vasudev A, Ying CT, Ayyadhury S, Puan KJ, Andiappan AK, Nyunt MS, Shadan NB, Mustafa S, Low I, Rotzschke O, Fulop T, Ng TP, Larbi A (2014) γ/δ T cell subsets in human aging using the classical α/β T cell model. J Leukoc Biol. 96(4):647–655 Bhat J, Dubin S, Dananberg A, Quabius ES, Fritsch J, Dowds CM, Saxena A, Chitadze G, Lettau M, Kabelitz D (2019) Histone deacetylase inhibitor modulates NKG2D receptor expression and memory phenotype of human gamma/delta T cells upon interaction with tumor cells. Front Immunol. 10:569 Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D, Mytilineos J, Wesch D, Oberg HH, Held-Feindt J, Kabelitz D (2015) NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncoimmunology. 5(4):e1093276 Karunakaran MM, Herrmann T (2014) The Vγ9Vδ2 T cell antigen receptor and butyrophilin-3 A1: models of interaction, the possibility of co-evolution, and the case of dendritic epidermal T cells. Front Immunol. 5:648 Kjer-Nielsen L, Corbett AJ, Chen Z, Liu L, Mak JY, Godfrey DI, Rossjohn J, Fairlie DP, McCluskey J, Eckle SB (2018) An overview on the identification of MAIT cell antigens. Immunol Cell Biol. 96(6):573–587 Xu W, Monaco G, Wong EH, Tan WLW, Kared H, Simoni Y, Tan SW, How WZY, Tan CTY, Lee BTK, Carbajo D, K G S, Low ICH, Mok EWH, Foo S, Lum J, Tey HL, Tan WP, Poidinger M, Newell E, Ng TP, Foo R, Akbar AN, Fülöp T, Larbi A (2019) Mapping of γ/δ T cells reveals Vδ2+ T cells resistance to senescence. EBioMedicine. 39:44–58 Tan CT, Wistuba-Hamprecht K, Xu W, Nyunt MS, Vasudev A, Lee BT, Pawelec G, Puan KJ, Rotzschke O, Ng TP, Larbi A (2016) Vδ2+ and α/ß T cells show divergent trajectories during human aging. Oncotarget. 7(29):44906–44918 Yang Q, Bhandoola A (2016) The development of adult innate lymphoid cells. Curr Opin Immunol. 39:114–120 Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell. 174(5):1054–1066 Fung ITH, Sankar P, Zhang Y, Robison LS, Zhao X, D'Souza SS, Salinero AE, Wang Y, Qian J, Kuentzel ML, Chittur SV, Temple S, Zuloaga KL, Yang Q (2020) Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J Exp Med. 217(4):e20190915 Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 14(5):428–436 Hao Y, O'Neill P, Naradikian MS, Scholz JL, Cancro MP (2011) A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 118(5):1294–1304 Ratliff M, Alter S, Frasca D, Blomberg BB (2013) Riley RL In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell. 12(2):303–311 Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, Marrack P (2011) Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood. 118(5):1305–1315 Rubtsova K, Rubtsov AV, Cancro MP, Marrack P (2015) Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J Immunol. 195(5):1933–1937 Wong C, Goldstein DR (2013) Impact of aging on antigen presentation cell function of dendritic cells. Curr Opin Immunol. 25(4):535–541 Zak DE, Tam VC, Aderem A (2014) Systems-level analysis of innate immunity. Annu Rev Immunol. 32:547–577 Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 24(5):331–341 Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol. 22(4):507–513 Drew W, Wilson DV, Sapey E (2018) Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol. 105:70–77 Clark HL, Banks R, Jones L, Hornick TR, Higgins PA, Burant CJ, Canaday DH (2012) Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals. Clin Immunol. 144(2):172–177 Kajimura J, Lynch HE, Geyer S, French B, Yamaoka M, Shterev ID, Sempowski GD, Kyoizumi S, Yoshida K, Misumi M, Ohishi W, Hayashi T, Nakachi K, Kusunoki Y (2018) Radiation- and age-associated changes in peripheral blood dendritic cell populations among aging atomic bomb survivors in Japan. Radiat Res. 189(1):84–94 Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature. 392(6673):245–252 Sung SJ (2019) Monocyte-derived dendritic cells as antigen-presenting cells in T-cell proliferation and cytokine production. Methods Mol Biol. 2020:131–141 Satoh T, Akira S (2016) Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 4(6) Hemmi H, Akira S (2005) TLR signalling and the function of dendritic cells. Chem Immunol Allergy. 86:120–135 Shodell M, Siegal FP (2002) Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol 56:518–521 Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M et al (2007) Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 122:220–228 Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 70:777–784 Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L et al (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184:2518–2527 Agrawal A, Agrawal S, Gupta S (2007) Dendritic cells in human aging. Exp Gerontol 42:421–426 Agrawal A, Tay J, Ton S, Agrawal S, Gupta S (2009) Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J Immunol 182:1138–1145 Witkowski JM, Gorgas G, Miller RA (1996) Reciprocal expression of P-glycoprotein and TAP1 accompanied by higher expression of MHC class I antigens in T cells of old mice. J Gerontol A Biol Sci Med Sci. 51(1):B76–B82 Assounga AG, Warner CM (2005 Winter) Memory lymphocytes of young and old C57BL/6 mice express high levels of class I major histocompatibility complex (H-2 Kb) protein. Growth Dev Aging. 69(2):59–66 Herrero C, Sebastián C, Marqués L, Comalada M, Xaus J, Valledor AF, Lloberas J, Celada A (2002) Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol. 37(2-3):389–394 Metcalf TU, Cubas RA, Ghneim K, Cartwright MJ, Grevenynghe JV, Richner JM, Olagnier DP, Wilkinson PA, Cameron MJ, Park BS, Hiscott JB, Diamond MS, Wertheimer AM, Nikolich-Zugich J, Haddad EK (2015) Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell. 14(3):421–432 Larbi A, Fulop T (2014) From "truly naïve" to "exhausted senescent" T cells: when markers predict functionality. Cytometry A. 85(1):25–35 Alves AS, Bueno V (2019) Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes. Einstein (Sao Paulo) 17(2):eRB4733 Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 102(4):977–988 Alberro A, Osorio-Querejeta I, Sepúlveda L, Fernández-Eulate G, Mateo-Abad M, Muñoz-Culla M, Carregal-Romero S, Matheu A, Vergara I, López de Munain A, Sáenz-Cuesta M, Otaegui D (2019) T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging (Albany NY) 11(22):10723–10741 Maue AC, Haynes L (2009) CD4+ T cells and immunosenescence--a mini-review. Gerontology. 55(5):491–495 Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A. 111(36):13139–13144 Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM (2014) Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 192(6):2689–2698 Hussain T, Quinn KM (2019) Similar but different: virtual memory CD8 T cells as a memory-like cell population. Immunol Cell Biol. 97(7):675–684 Davenport B, Eberlein J, van der Heide V, Jhun K, Nguyen TT, Victorino F, Trotta A, Chipuk J, Yi Z, Zhang W, Clambey ET, Scott DK, Homann D (2019) Aging of antiviral CD8(+) memory T cells fosters increased survival, metabolic adaptations, and lymphoid tissue homing. J Immunol. 202(2):460–475 Kim C, Hu B, Jadhav RR, Jin J, Zhang H, Cavanagh MM, Akondy RS, Ahmed R, Weyand CM, Goronzy JJ (2018) Activation of miR-21-regulated pathways in immune aging selects against signatures characteristic of memory T cells. Cell Rep 25(8):2148-2162.e5 Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML (2019) Cutting edge: synapse propensity of human memory CD8 T cells confers competitive advantage over naive counterparts. J Immunol. 203(3):601–606 Goronzy JJ, Weyand CM (2017) Successful and maladaptive T Cell Aging. Immunity. 46(3):364–378 Koff WC, Williams MA (2020) Covid-19 and immunity in aging populations - a new research agenda. N Engl J Med 383(9):804–805 Herndler-Brandstetter D, Landgraf K, Tzankov A, Jenewein B, Brunauer R, Laschober GT, Parson W, Kloss F, Gassner R, Lepperdinger G, Grubeck-Loebenstein B (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol. 91(2):197–205 Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Žugich D, Kaye J, Nikolich-Žugich J (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 192(5):2143–2155 Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol. 17(5):480–485 Henson SM, Akbar AN (2010) Memory T-cell homeostasis and senescence during aging. Adv Exp Med Biol. 684:189–197 Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des. 19(9):1680–1698 Akbar AN, Henson SM, Lanna A (2016) Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol. 37(12):866–876 Callender LA, Carroll EC, Bober EA, Henson SM (2018) Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Res Rev. 47:24–30 Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM (2018) Human CD8(+) EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 17(1):e12675 Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology. 14(6):617–628 Jergović M, Contreras NA, Nikolich-Žugich J (2019) Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol. 208(3-4):263–269 Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C, Kirkwood T, von Zglinicki T (2016) CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell. 15(2):389–392 Weinstein BS, Ciszek D (2002) The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair. Exp Gerontol. 37(5):615–627 Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 9:586 Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW (2019) Dissecting aging and senescence-current concepts and open lessons. Cells. 8(11):1446 Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, Schietinger A, Schumacher TN, Schwartzberg PL, Sharpe AH, Speiser DE, Wherry EJ, Youngblood BA, Zehn D (2019) Defining 'T cell exhaustion'. Nat Rev Immunol. 19(11):665–674 Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36(4):265–276 Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15(8):486–499 Pawelec G (2019) Is there a positive side to T cell exhaustion? Front Immunol. 10:111 Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T (2018) Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol. 105:128–139 Goronzy JJ, Li G, Yu M, Weyand CM (2012) Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol. 24(5):365–372 Gupta S (1989) Membrane signal transduction in T cells in aging humans. Ann N Y Acad Sci. 568:277–282 Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol. 29:105–111 Bartlett AH, Liang JW, Sandoval-Sierra JV, Fowke JH, Simonsick EM, Johnson KC, Mozhui K (2019) Longitudinal study of leukocyte DNA methylation and biomarkers for cancer risk in older adults. Biomark Res. 7:10 Torrão RC, Bennett SJ, Brown JE, Griffiths HR (2014) Does metabolic reprogramming underpin age-associated changes in T cell phenotype and function? Free Radic Biol Med. Jun 71:26–35 Yanes RE, Zhang H, Shen Y, Weyand CM, Goronzy JJ (2019) Metabolic reprogramming in memory CD4 T cell responses of old adults. Clin Immunol. 207:58–67 Marko MG, Ahmed T, Bunnell SC, Wu D, Chung H, Huber BT, Meydani SN (2007) Age-associated decline in effective immune synapse formation of CD4(+) T cells is reversed by vitamin E supplementation. J Immunol. 178(3):1443–1449 Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A (2012) Aging, immunosenescence and membrane rafts: the lipid connection. Longev Healthspan. 1:6 Yu M, Li G, Lee WW, Yuan M, Cui D, Weyand CM, Goronzy JJ (2012) Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proc Natl Acad Sci U S A. 109(15):E879–E888 Li G, Yu M, Lee W-W, Tsang M, Krishnan E, Weyand CM, Jörg J, Goronzy JJ (2012) Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 18(10):1518–1524 Le Page A, Fortin C, Garneau H, Allard N, Tsvetkova K, Tan CT, Larbi A, Dupuis G, Fülöp T (2014) Downregulation of inhibitory SRC homology 2 domain-containing phosphatase-1 (SHP-1) leads to recovery of T cell responses in elderly. Cell Commun Signal. 12:2 Shen-Orr SS, Furman D, Kidd BA, Hadad F, Lovelace P, Huang Y-W, Rosenberg-Hasson Y, Mackey S, Gomari Grisar FA, Pickman Y, Maecker HT, Chien Y-H, Dekker CL, Wu JC, Butte AJ, Davis MM (2016) Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst 3(4):374-384.e4. https://doi.org/10.1016/j.cels.2016.09.009 Epub 2016 Oct 13. Piasecka B, Duffy D, Urrutia A, Quach H, Patin E, Posseme C, Bergstedt J, Charbit B, Rouilly V, MacPherson CR, Hasan M, Albaud B, Gentien D, Fellay J, Albert ML, Quintana-Murci L, Milieu Intérieur Consortium (2018) Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc Natl Acad Sci U S A. 115(3):E488–E497 Ahadi S, Zhou W, Schüssler-Fiorenza Rose SM, Sailani MR, Contrepois K, Avina M, Ashland M, Brunet A, Snyder M (2020) Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat Med. 26(1):83–90 Jagger A, Shimojima Y, Goronzy JJ, Weyand CM (2014) Regulatory T cells and the immune aging process: a mini-review. Gerontology. 60(2):130–137 Wang L, Xie Y, Zhu LJ, Chang TT, Mao YQ, Li J (2010) An association between immunosenescence and CD4(+)CD25(+) regulatory T cells: a systematic review. Biomed Environ Sci. 23(4):327–332 Salminen A, Kaarniranta K, Kauppinen A (2019) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci. 76(10):1901–1918 Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA (2012) Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol. 24(4):482–487 Goronzy JJ, Weyand CM (2012) Immune aging and autoimmunity. Cell Mol Life Sci. 69(10):1615–1623 Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, Belkaid Y, Chougnet C (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 181(3):1835–1848 Gottenberg JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, Taoufik Y, Mariette X (2005) CD4 CD25high regulatory T cells are not impaired in patients with primary Sjögren's syndrome. J Autoimmun. 24(3):235–242 Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA (2005) The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 140(3):540–546 Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev. 5(2):136–139 Simone R, Zicca A, Saverino D (2008) The frequency of regulatory CD3+CD8+CD28- CD25+ T lymphocytes in human peripheral blood increases with age. J Leukoc Biol. 84(6):1454–1461 Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G, Tartour E (2013) Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 6(2):147–157 Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9(3):162–174. https://doi.org/10.1038/nri2506 Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumour Biol. 37(2):1387–1406. https://doi.org/10.1007/s13277-015-4477-9 Epub 2015 Nov 26 Alves AS, Ishimura ME, Duarte YAO, Bueno V (2018) Parameters of the immune system and vitamin D levels in old individuals. Front Immunol. 9:1122 Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 93(4):633–637 Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R (2019) Correlation between MDSC and immune tolerance in transplantation: cytokines, pathways and cell-cell interaction. Curr Gene Ther. 19(2):81–92 Salminen A, Kaarniranta K, Kauppinen A (2020) ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl). 98(5):633–650 Salminen A (2020) Activation of immunosuppressive network in the aging process. Ageing Res Rev. 57:100998 Delisle JS, Giroux M, Boucher G, Landry JR, Hardy MP, Lemieux S, Jones RG, Wilhelm BT, Perreault C (2013) The TGF-β-Smad3 pathway inhibits CD28-dependent cell growth and proliferation of CD4 T cells. Genes Immun 14:115–126 Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI (2009) Cellintrinsic transforming growth factor-β signaling mediates virusspecific CD8+ T cell deletion and viral persistence in vivo. Immunity 31:145–157 Esebanmen GE, Langridge WHR (2017) The role of TGF-β signaling in dendritic cell tolerance. Immunol Res 65:987–994 Zaiatz-Bittencourt V, Finlay DK, Gardiner CM (2018) Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol 200:3934–3941 Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, Degouve S, Djebali S, Sanlaville A, Charrier E, Bienvenu J, Marie JC, Caux C, Marvel J, Town L, Huntington ND, Bartholin L, Finlay D, Smyth MJ, Walzer T (2016) TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9(415):ra19 Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA (2007) IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J Allergy Clin Immunol 120:76–83 Tedone E, Huang E, O'Hara R, Batten K, Ludlow AT, Lai TP, Arosio B, Mari D, Wright WE, Shay JW (2019) Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 18(1):e12859 Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P (2017) The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mech Ageing Dev 165(Pt B):180–184 Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 75(1):129–148 Sotgia S, Zinellu A, Mangoni AA, Serra R, Pintus G, Caruso C, Deiana L, Carru C (2017) Cellular immune activation in Sardinian middle-aged, older adults and centenarians. Exp Gerontol. 99:133–137 Derhovanessian E, Chen S, Maier AB, Hähnel K, de Craen AJ, Roelofs H, Westendorp R, Pawelec G (2015) CCR4+ regulatory T cells accumulate in the very elderly and correlate with superior 8-year survival. J Gerontol A Biol Sci Med Sci. 70(8):917–923 Ganal-Vonarburg SC, Duerr CU (2020) The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology. 159(1):39–51 Mangiola F, Nicoletti A, Gasbarrini A, Ponziani FR (2018) Gut microbiota and aging. Eur Rev Med Pharmacol Sci. 22(21):7404–7413 Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 5(5):e10667 Kim BS, Choi CW, Shin H, Jin SP, Bae JS, Han M, Seo EY, Chun J, Chung JH (2019) Comparison of the gut microbiota of centenarians in longevity villages of South Korea with those of other age groups. J. Microbiol. Biotechnol. 29:429–440 Tuikhar N, Keisam S, Labala RK, Ramakrishnan Imrat P, Arunkumar MC, Ahmed G, Biagi E, Jeyaram K (2019) Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech. Ageing Dev. 179:23–35 Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2014) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241 Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J (2016) Gut microbiota signatures of longevity. Curr. Biol. 26:R832–R833 Cӑtoi AF, Corina A, Katsiki N, Vodnar DC, Andreicuț AD, Stoian AP, Rizzo M, Pérez-Martínez P (1866) Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta Mol Basis Dis. 2020 Jul 1(7):165765 Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 128(1):92–105 Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli S, Olivieri F. Inflamm-aging: why older men are the most susceptible to SARS-Cov-2 complicated outcomes. reprints (www.preprints.org). https://doi.org/10.20944/preprints202004.0143.v1. Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ (2020) SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. https://doi.org/10.1007/s11357-020-00186-0 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China medical treatment expert group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 395(10229):1054–1062 Xie J, Tong Z, Guan X, Du B, Qiu H (2020) Clinical characteristics of patients who died of coronavirus disease 2019 in China. JAMA Netw Open 3(4):e205619. https://doi.org/10.1001/jamanetworkopen.2020.5619 Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, Shi J, Zhou M, Wu B, Yang Z, Zhang C, Yue J, Zhang Z, Renz H, Liu X, Xie J, Xie M, Zhao J (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol S0091-6749(20):30495-4 Vardhana SA, Wolchok JD (2020 Jun 1) The many faces of the anti-COVID immune response. J Exp Med. 217(6):e20200678 Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, Benjamin R tenOever (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181(5):1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026 Cheng H, Wang Y, Wang GQ (2020) Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol 92(7):726–730 Sriram K, Insel PA (2020) A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance. Br J Pharmacol. https://doi.org/10.1111/bph.15082 Astuti I, Ysrafil (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 14(4):407–412 Qiu Y, Tu GW, Ju MJ, Yang C, Luo Z (2019) The immune system regulation in sepsis: from innate to adaptive. Curr Protein Pept Sci. 20(8):799–816 Martín S, Pérez A, Aldecoa C (2017) Sepsis and immunosenescence in the elderly patient: a review. Front Med (Lausanne) 4:20 Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O'Mahony L, Gao Y, Nadeau K, Akdis CA (2020) Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75(7):1564–1581 Matricardi PM, Dal Negro RW, Nisini R (2020) The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. https://doi.org/10.1111/pai.13271 Saghazadeh A, Rezaei N (2020) Immune-epidemiological parameters of the novel coronavirus - a perspective. Expert Rev Clin Immunol 0(0):1–6 Kunz R, Minder M (2020) COVID-19 pandemic: palliative care for elderly and frail patients at home and in residential and nursing homes. Swiss Med Wkly 150:w20235 Morley JE, Vellas B (2020) Editorial: COVID-19 and older adults. J Nutr Health Aging 24(4):364–365 Gardner W, States D, Bagley N (2020) The coronavirus and the risks to the elderly in long-term care. J Aging Soc Policy. 3:1–6 Shahid Z, Kalayanamitra R, McClafferty B, Kepko D, Ramgobin D, Patel R, Aggarwal CS, Vunnam R, Sahu N, Bhatt D, Jones K, Golamari R, Jain R (2020) COVID-19 and older adults: what we know. J Am Geriatr Soc 68(5):926–929 Vanderbeke L, Spriet I, Breynaert C, Rijnders BJA, Verweij PE, Wauters J (2018) Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment. Curr Opin Infect Dis 31(6):471–480 Cohen AA, Levasseur M, Raina P, Fried LP, Fülöp T (2019) Is aging biology ageist? J Gerontol A Biol Sci Med Sci glz190 van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 83(4):311–319 Davis MM, Tato CM, Furman D (2017) Systems immunology: just getting started. Nat Immunol 18(7):725 Lansing JS (2003) Complex adaptive systems. Ann Rev Anthropol 32(1):183–204 Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17(1):205–220 Wagner A, Weinberger B (2020) Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol 11:717 Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353 Rynda-Apple A, Robinson KM, Alcorn JF (2015) Influenza and bacterial superinfection: illuminating the immunologic mechanisms of disease. Infect Immun 83(10):3764–3770