Immunopathology of Mastitis: Insights into Disease Recognition and Resolution

Journal of Mammary Gland Biology and Neoplasia - Tập 16 - Trang 291-304 - 2011
Stacey L. Aitken1, Christine M. Corl1, Lorraine M. Sordillo1
1G300 Veterinary Medical Center, College of Veterinary Medicine, Michigan State University, East Lansing, USA

Tóm tắt

Mastitis is an inflammation of the mammary gland commonly caused by bacterial infection. The inflammatory process is a normal and necessary immunological response to invading pathogens. The purpose of host inflammatory responses is to eliminate the source of tissue injury, restore immune homeostasis, and return tissues to normal function. The inflammatory cascade results not only in the escalation of local antimicrobial factors, but also in the increased movement of leukocytes and plasma components from the blood that may cause damage to host tissues. A precarious balance between pro-inflammatory and pro-resolving mechanisms is needed to ensure optimal bacterial clearance and the prompt return to immune homeostasis. Therefore, inflammatory responses must be tightly regulated to avoid bystander damage to the milk synthesizing tissues of the mammary gland. The defense mechanisms of the mammary gland function optimally when invading bacteria are recognized promptly, the initial inflammatory response is adequate to rapidly eliminate the infection, and the mammary gland is returned to normal function quickly without any noticeable clinical symptoms. Suboptimal or dysfunctional mammary gland defenses, however, may contribute to the development of severe acute inflammation or chronic mastitis that adversely affects the quantity and quality of milk. This review will summarize critical mammary gland defense mechanisms that are necessary for immune surveillance and the rapid elimination of mastitis-causing organisms. Situations in which diminished efficiency of innate or adaptive mammary gland immune responses may contribute to disease pathogenesis will also be discussed. A better understanding of the complex interactions between mammary gland defenses and mastitis-causing pathogens should prove useful for the future control of intramammary infections.

Tài liệu tham khảo

Foxman B, D'Arcy H, Gillespie B, Bobo JK, Schwartz K. Lactation mastitis: occurrence and medical management among 946 breastfeeding women in the United States. Am J Epidemiol. 2002;155(2):103–14. Inch S, von Xylander S. Mastitis: Causes and Management. Geneva, Switzerland: World Health Organization (WHO) Department of child and adolescent health and development; 2000. Mavrogianni VS, Menzies PI, Fragkou IA, Fthenakis GC. Principles of mastitis treatment in sheep and goats. Vet Clin North Am Food Anim Pract. 2011;27(1):115–20. Hogeveen H, Huijps K, Lam TJ. Economic aspects of mastitis: new developments. N Z Vet J. 2011;59(1):16–23. Sordillo LM, Aitken SL. Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol. 2009;128(1–3):104–9. Sordillo LM, Contreras GA, Aitken SL. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim Health Res Rev. 2009;10(1):53–63. Sordillo LM, Streicher KL. Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia. 2002;7(2):135–46. Contreras GA, Sordillo LM. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp Immunol Microbiol Infect Dis. 2011;34(3):281–9. Oliver SP, Sordillo LM. Udder health in the periparturient period. J Dairy Sci. 1988;71(9):2584–606. Bannerman DD. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci. 2009;87(13 Suppl):10–25. Capuco AV, Bright SA, Pankey JW, Wood DL, Miller RH, Bitman J. Increased susceptibility to intramammary infection following removal of teat canal keratin. J Dairy Sci. 1992;75(8):2126–30. Bramley AJ, Dodd FH. Reviews of the progress of dairy science: mastitis control–progress and prospects. J Dairy Res. 1984;51(3):481–512. Hogan JS, Duthie AH, Pankey JW. Fatty acid composition of bovine teat canal keratin. J Dairy Sci. 1986;69(9):2424–7. Chaneton L, Tirante L, Maito J, Chaves J, Bussmann LE. Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J Dairy Sci. 2008;91(5):1865–73. Pecorini C, Sassera D, Rebucci R, Saccone F, Bandi C, Baldi A. Evaluation of the protective effect of bovine lactoferrin against lipopolysaccharides in a bovine mammary epithelial cell line. Vet Res Commun. 2010;34(3):267–76. Patel D, Almeida RA, Dunlap JR, Oliver SP. Bovine lactoferrin serves as a molecular bridge for internalization of Streptococcus uberis into bovine mammary epithelial cells. Vet Microbiol. 2009;137(3–4):297–301. Sordillo LM, Nickerson SC, Akers RM, Oliver SP. Secretion composition during bovine mammary involution and the relationship with mastitis. Int J Biochem. 1987;19(12):1165–72. Chaneton L, Perez Saez JM, Bussmann LE. Antimicrobial activity of bovine beta-lactoglobulin against mastitis-causing bacteria. J Dairy Sci. 2011;94(1):138–45. Riollet C, Rainard P, Poutrel B. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin Diagn Lab Immunol. 2000;7(2):161–7. Rainard P. The complement in milk and defense of the bovine mammary gland against infections. Vet Res. 2003;34(5):647–70. Sordillo LM, Shafer-Weaver K, DeRosa D. Immunobiology of the mammary gland. J Dairy Sci. 1997;80(8):1851–65. Alluwaimi AM. The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Res Vet Sci. 2004;77(3):211–22. Riollet C, Rainard P, Poutrel B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol. 2000;480:247–58. Watson CJ, Oliver CH, Khaled WT. Cytokine signalling in mammary gland development. J Reprod Immunol. 2011;88(2):124–9. Babiuk LA, Sordillo LM, Campos M, Hughes HP, Rossi-Campos A, Harland R. Application of interferons in the control of infectious diseases of cattle. J Dairy Sci. 1991;74(12):4385–98. Shafer-Weaver KA, Corl CM, Sordillo LM. Shifts in bovine CD4+ subpopulations increase T-helper-2 compared with T-helper-1 effector cells during the postpartum period. J Dairy Sci. 1999;82(8):1696–706. Sordillo LM, Pighetti GM, Davis MR. Enhanced production of bovine tumor necrosis factor-alpha during the periparturient period. Vet Immunol Immunopathol. 1995;49(3):263–70. Varela LM, Ip MM. Tumor necrosis factor-alpha: a multifunctional regulator of mammary gland development. Endocrinology. 1996;137(11):4915–24. Plath A, Einspanier R, Peters F, Sinowatz F, Schams D. Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. J Endocrinol. 1997;155(3):501–11. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61. Paape M, Mehrzad J, Zhao X, Detilleux J, Burvenich C. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia. 2002;7(2):109–21. De Vries LD, Dover H, Casey T, VandeHaar MJ, Plaut K. Characterization of mammary stromal remodeling during the dry period. J Dairy Sci. 2011;93(6):2433–43. Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor beta (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005;25(18):8108–25. Sordillo LM, Nickerson SC. Quantification and immunoglobulin classification of plasma cells in nonlactating bovine mammary tissue. J Dairy Sci. 1988;71(1):84–91. Zhang S, Mao Y, Huang J, Ma T, Zhang L, Zhu X, et al. Immunoglobulin gene locus events in epithelial cells of lactating mouse mammary glands. Cell Mol Life Sci. 2010;67(6):985–94. Fetherston CM, Lai CT, Hartmann PE. Recurrent blocked duct(s) in a mother with immunoglobulin A deficiency. Breastfeed Med. 2008;3(4):261–5. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34. Jungi TW, Farhat K, Burgener IA, Werling D. Toll-like receptors in domestic animals. Cell Tissue Res. 2011;343(1):107–20. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90. Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003;284(6):L899–914. Vidal K, Donnet-Hughes A. CD14: a soluble pattern recognition receptor in milk. Adv Exp Med Biol. 2008;606:195–216. Li C, Wang Y, Gao L, Zhang J, Shao J, Wang S, et al. Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myristate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3). Cell Growth Differ. 2002;13(1):27–38. Wang Y, Zarlenga DS, Paape MJ, Dahl GE. Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide. Vet Immunol Immunopathol. 2002;86(1–2):115–24. Lee JW, Paape MJ, Elsasser TH, Zhao X. Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli. Infect Immun. 2003;71(7):4034–9. Wall R, Powell A, Sohn E, Foster-Frey J, Bannerman D, Paape M. Enhanced host immune recognition of mastitis causing Escherchia coli in CD-14 transgenic mice. Anim Biotechnol. 2009;20(1):1–14. Nemchinov LG, Paape MJ, Sohn EJ, Bannerman DD, Zarlenga DS, Hammond RW. Bovine CD14 receptor produced in plants reduces severity of intramammary bacterial infection. FASEB J. 2006;20(9):1345–51. Harizi H, Corcuff JB, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med. 2008;14(10):461–9. Zia S, Giri SN, Cullor J, Emau P, Osburn BI, Bushnell RB. Role of eicosanoids, histamine, and serotonin in the pathogenesis of Klebsiella pneumoniae-induced bovine mastitis. Am J Vet Res. 1987;48(11):1617–25. Maddox JF, Reddy CC, Eberhart RJ, Scholz RW. Dietary selenium effects on milk eicosanoid concentration in dairy cows during coliform mastitis. Prostaglandins. 1991;42(4):369–78. Atroshi F, Parantainen J, Sankari S, Osterman T. Prostaglandins and glutathione peroxidase in bovine mastitis. Res Vet Sci. 1986;40(3):361–6. Atroshi F, Rizzo A, Kangasniemi R, Sankari S, Tyopponen T, Osterman T, et al. Role of plasma fatty acids, prostaglandins and antioxidant balance in bovine mastitis. Zentralbl Veterinarmed A. 1989;36(9):702–11. Boutet P, Bureau F, Degand G, Lekeux P. Imbalance between lipoxin A4 and leukotriene B4 in chronic mastitis-affected cows. J Dairy Sci. 2003;86(11):3430–9. Peter AT, Clark PW, Van Roekel DE, Luker CW, Gaines JD, Bosu WT. Temporal changes in metabolites of prostanoids in milk of heifers after intramammary infusion of Escherichia coli organisms. Prostaglandins. 1990;39(4):451–7. Pattanaik U, Prasad K. Oxygen Free Radicals and Endotoxic Shock: Effect of Flaxseed. J Cardiovasc Pharmacol Ther. 1998;3(4):305–18. Banting A, Banting S, Heinonen K, Mustonen K. Efficacy of oral and parenteral ketoprofen in lactating cows with endotoxin-induced acute mastitis. Vet Rec. 2008;163(17):506–9. Vangroenweghe F, Duchateau L, Boutet P, Lekeux P, Rainard P, Paape MJ, et al. Effect of carprofen treatment following experimentally induced Escherichia coli mastitis in primiparous cows. J Dairy Sci. 2005;88(7):2361–76. Wagner SA, Apley MD. Effects of two anti-inflammatory drugs on physiologic variables and milk production in cows with endotoxin-induced mastitis. Am J Vet Res. 2004;65(1):64–8. McDougall S, Bryan MA, Tiddy RM. Effect of treatment with the nonsteroidal antiinflammatory meloxicam on milk production, somatic cell count, probability of re-treatment, and culling of dairy cows with mild clinical mastitis. J Dairy Sci. 2009;92(9):4421–31. Kühn H. Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-hydro(pero)xy-9Z,11E-octadecadienoic acid. Progr Lipid Res. 1996;35(3):203–26. Natarajan R, Nadler JL. Lipid inflammatory mediators in diabetic vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(9):1542–8. Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids. 2007;77(2):67–77. Spector AA, Gordon JA, Moore SA. Hydroxyeicosatetraenoic acids (HETEs). Prog Lipid Res. 1988;27(4):271–323. Reilly KB, Srinivasan S, Hatley ME, Patricia MK, Lannigan J, Bolick DT, et al. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J Biol Chem. 2004;279(10):9440–50. Cao YZ, Reddy CC, Sordillo LM. Altered eicosanoid biosynthesis in selenium-deficient endothelial cells. Free Radic Biol Med. 2000;28(3):381–9. Sordillo LM, Streicher KL, Mullarky IK, Gandy JC, Trigona W, Corl CM. Selenium inhibits 15-hydroperoxyoctadecadienoic acid-induced intracellular adhesion molecule expression in aortic endothelial cells. Free Radic Biol Med. 2008;44(1):34–43. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61. Aitken SL, Karcher EL, Rezamand P, Gandy JC, VandeHaar MJ, Capuco AV, et al. Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. J Dairy Sci. 2009;92(2):589–98. Prosser CG, Davis SR, Farr VC, Lacasse P. Regulation of blood flow in the mammary microvasculature. J Dairy Sci. 1996;79(7):1184–97. Naccarato AG, Viacava P, Bocci G, Fanelli G, Aretini P, Lonobile A, et al. Definition of the microvascular pattern of the normal human adult mammary gland. J Anat. 2003;203(6):599–603. Stirling JW, Chandler JA. The fine structure of the normal, resting terminal ductal-lobular unit of the female breast. Virchows Arch A Pathol Anat Histol. 1976;372(3):205–26. Matsumoto M, Kurohmaru M, Hayashi Y, Nishinakagawa H, Otsuka J. Permeability of mammary gland capillaries to ferritin in mice. J Vet Med Sci. 1994;56(1):65–70. Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J Vet Med Sci. 1992;54(5):937–43. Ludewig T. Light and electron microscopic investigations of the blood-milk barrier in lactating cow udders. Anat Histol Embryol. 1996;25(2):121–6. Abdul Awal M, Matsumoto M, Toyoshima Y, Nishinakagawa H. Ultrastructural and morphometrical studies on the endothelial cells of arteries supplying the abdomino-inguinal mammary gland of rats during the reproductive cycle. J Vet Med Sci. 1996;58(1):29–34. Aitken SL, Corl CM, Sordillo LM. Pro-inflammatory and pro-apoptotic responses of TNF-alpha stimulated bovine mammary endothelial cells. Vet Immunol Immunopathol. 2011;140(3–4):282–90. Corl CM, Contreras GA, Sordillo LM. Lipoxygenase metabolites modulate vascular-derived platelet activating factor production following endotoxin challenge. Vet Immunol Immunopathol. 2010;136(1–2):98–107. Corl CM, Gandy JC, Sordillo LM. Platelet activating factor production and proinflammatory gene expression in endotoxin-challenged bovine mammary endothelial cells. J Dairy Sci. 2008;91(8):3067–78. Maddox JF, Aherne KM, Reddy CC, Sordillo LM. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency. J Leukoc Biol. 1999;65(5):658–64. Sordillo LM, Doymaz MZ, Oliver SP. Morphological study of chronic Staphylococcus aureus mastitis in the lactating bovine mammary gland. Res Vet Sci. 1989;47(2):247–52. Sordillo LM, Nickerson SC, Akers RM. Pathology of Staphylococcus aureus mastitis during lactogenesis: relationships with bovine mammary structure and function. J Dairy Sci. 1989;72(1):228–40. Rinaldi M, Li RW, Bannerman DD, Daniels KM, Evock-Clover C, Silva MV, et al. A sentinel function for teat tissues in dairy cows: dominant innate immune response elements define early response to E. coli mastitis. Funct Integr Genomics. 2010;10(1):21–38. Whelehan CJ, Meade KG, Eckersall PD, Young FJ, O'Farrelly C. Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet Immunol Immunopathol. 2011;140(3–4):181–9. Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Bannerman DD, Paape MJ, Zhao X. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Vet Res. 2008;39(2):11. Yang W, Zerbe H, Petzl W, Brunner RM, Gunther J, Draing C, et al. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol. 2008;45(5):1385–97. Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, et al. Comparative kinetics of Escherichia coli- and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infect Immun. 2011;79(2):695–707. Bougarn S, Cunha P, Harmache A, Fromageau A, Gilbert FB, Rainard P. Muramyl dipeptide synergizes with Staphylococcus aureus lipoteichoic acid to recruit neutrophils in the mammary gland and to stimulate mammary epithelial cells. Clin Vaccine Immunol. 2010;17(11):1797–809. Petzl W, Zerbe H, Gunther J, Yang W, Seyfert HM, Nurnberg G, et al. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res. 2008;39(2):18. Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol. 2004;11(1):174–85. Mehrzad J, Duchateau L, Burvenich C. High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis. Vet Res. 2005;36(1):101–16. Lippolis JD, Reinhardt TA, Goff JP, Horst RL. Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet Immunol Immunopathol. 2006;113(1–2):248–55. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. Gonen E, Vallon-Eberhard A, Elazar S, Harmelin A, Brenner O, Rosenshine I, et al. Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis. Cell Microbiol. 2007;9(12):2826–38. Sladek Z, Rysanek D, Ryznarova H, Faldyna M. Neutrophil apoptosis during experimentally induced Staphylococcus aureus mastitis. Vet Res. 2005;36(4):629–43. Barrio MB, Rainard P, Prevost G. LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. Microbes Infect. 2006;8(8):2068–74. Sordillo LM, Peel JE. Effect of interferon-gamma on the production of tumor necrosis factor during acute Escherichia coli mastitis. J Dairy Sci. 1992;75(8):2119–25. Clarkson RW, Watson CJ. NF-kappaB and apoptosis in mammary epithelial cells. J Mammary Gland Biol Neoplasia. 1999;4(2):165–75. Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci. 2008;86(13 Suppl):57–65. Long E, Capuco AV, Wood DL, Sonstegard T, Tomita G, Paape MJ, et al. Escherichia coli induces apoptosis and proliferation of mammary cells. Cell Death Differ. 2001;8(8):808–16. Lauzon K, Zhao X, Bouetard A, Delbecchi L, Paquette B, Lacasse P. Antioxidants to prevent bovine neutrophil-induced mammary epithelial cell damage. J Dairy Sci. 2005;88(12):4295–303. Blum JW, Dosogne H, Hoeben D, Vangroenweghe F, Hammon HM, Bruckmaier RM, et al. Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows. Domest Anim Endocrinol. 2000;19(4):223–35. Wenz JR, Fox LK, Muller FJ, Rinaldi M, Zeng R, Bannerman DD. Factors associated with concentrations of select cytokine and acute phase proteins in dairy cows with naturally occurring clinical mastitis. J Dairy Sci. 2010;93(6):2458–70. Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol. 2001;70(3):317–25. Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G, Shukri T, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood. 2004;104(8):2376–84. Castillo C, Hernandez J, Bravo A, Lopez-Alonso M, Pereira V, Benedito JL. Oxidative status during late pregnancy and early lactation in dairy cows. Vet J. 2005;169(2):286–92. Sordillo LM, O'Boyle N, Gandy JC, Corl CM, Hamilton E. Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle. J Dairy Sci. 2007;90(3):1186–92. Erskine RJ, Eberhart RJ, Grasso PJ, Scholz RW. Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets. Am J Vet Res. 1989;50(12):2093–100. Weiss WP, Hogan JS, Todhunter DA, Smith KL. Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. J Dairy Sci. 1997;80(8):1728–37. Boueiz A, Hassoun PM. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res. 2009;77(1):26–34. Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res. 2003;34(5):521–64. Diez-Fraile A, Meyer E, Burvenich C. Regulation of adhesion molecules on circulating neutrophils during coliform mastitis and their possible immunomodulation with drugs. Vet Immunol Immunopathol. 2002;86(1–2):1–10. Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol. 2008;23(3):381–90. Medina E. Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host. J Innate Immun. 2009;1(3):176–80. Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584(14):3193–7. Burton JL, Kehrli Jr ME, Kapil S, Horst RL. Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J Leukoc Biol. 1995;57(2):317–25. Theodorou G, Daskalopoulou M, Chronopoulou R, Baldi A, Dell'orto V, Politis I. Acute mastitis induces upregulation of expression of plasminogen activator-related genes by blood monocytes and neutrophils in dairy ewes. Vet Immunol Immunopathol. 2010;138(1–2):124–8. Guo RF, Riedemann NC, Ward PA. Role of C5a-C5aR interaction in sepsis. Shock. 2004;21(1):1–7. Stevens MG, Van Poucke M, Peelman LJ, Rainard P, De Spiegeleer B, Rogiers C, et al. Anaphylatoxin C5a-induced toll-like receptor 4 signaling in bovine neutrophils. J Dairy Sci. 2011;94(1):152–64. Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol. 2004;11(3):463–72. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188(4):1310–5. Lee JW, Paape MJ, Elsasser TH, Zhao X. Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. J Dairy Sci. 2003;86(7):2382–9. Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 2006;7(8):232.