Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis

Springer Science and Business Media LLC - Tập 34 Số 6 - Trang 735-751 - 2012
Lynn Soong1, Calvin A. Henard1, Peter C. Melby2
1Department of Microbiology and Immunology, University of Texas Medical Branch, Medical Research Building 3.132, 301 University Boulevard, Galveston, TX, 77555-1070, USA
2Department of Pathology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banuls AL, Hide M, Prugnolle F (2007) Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 64:1–109

Guerra JA, Coelho LI, Pereira FR, Siqueira AM, Ribeiro RL et al (2011) American tegumentary leishmaniasis and HIV-AIDS association in a tertiary care center in the Brazilian Amazon. AmJTrop Med Hyg 85:524–527

Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359, table of contents

Lodge R, Ouellet M, Barat C, Andreani G, Kumar P et al (2012) HIV-1 promotes intake of Leishmania parasites by enhancing phosphatidylserine-mediated, CD91/LRP-1-dependent phagocytosis in human macrophages. PLoS One 7:e32761

Tacchini-Cottier F, Weinkopff T, Launois P (2012) Does T helper differentation correlate with resistance or susceptibility to infection with L. major? Some insights form the murine model. Frontiers Immunol 3:1–9

Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P (2011) Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 51:337–351

McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201:206–224

Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489

Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ et al (2010) Generation of pathogenic TH17 cells in the absence of TGF-beta signalling. Nature 467:967–971

Hirota K, Ahlfors H, Duarte JH, Stockinger B (2012) Regulation and function of innate and adaptive interleukin-17-producing cells. EMBO Rep 13:113–120

Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263

Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615

Jirmanus L, Glesby MJ, Guimaraes LH, Lago E, Rosa ME et al (2012) Epidemiological and clinical changes in American tegumentary leishmaniasis in an area of Leishmania (Viannia) braziliensis transmission over a 20-year period. AmJTrop Med Hyg 86:426–433

Guerra JA, Prestes SR, Silveira H, Coelho LI, Gama P et al (2011) Mucosal leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis 5:e980

Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B et al (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596

Miranda A, Carrasco R, Paz H, Pascale JM, Samudio F et al (2009) Molecular epidemiology of American tegumentary leishmaniasis in Panama. AmJTrop Med Hyg 81:565–571

Silveira FT, Lainson R, De Castro Gomes CM, Laurenti MD, Corbett CE (2009) Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunol 31:423–431

Sinha S, Fernandez G, Kapila R, Lambert WC, Schwartz RA (2008) Diffuse cutaneous leishmaniasis associated with the immune reconstitution inflammatory syndrome. Int J Dermatol 47:1263–1270

Castellucci L, Menezes E, Oliveira J, Magalhaes A, Guimaraes LH et al (2006) IL6–174 G/C promoter polymorphism influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. J Infect Dis 194:519–527

Ramasawmy R, Menezes E, Magalhaes A, Oliveira J, Castellucci L et al (2010) The −2518 bp promoter polymorphism at CCL2/MCP1 influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. Infect Genet Evol 10:607–613

Geddes K, Rubino SJ, Magalhaes JG, Streutker C, Le Bourhis L et al (2011) Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 17:837–844

Elshafie AI, Hlin E, Hakansson LD, Elghazali G, Safi SH et al (2011) Activity and turnover of eosinophil and neutrophil granulocytes are altered in visceral leishmaniasis. Int J Parasitol 41:463–469

Pitta MG, Romano A, Cabantous S, Henri S, Hammad A et al (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119:2379–2387

Bacellar O, Faria D, Nascimento M, Cardoso TM, Gollob KJ et al (2009) Interleukin 17 production among patients with American cutaneous leishmaniasis. J Infect Dis 200:75–78

Novoa R, Bacellar O, Nascimento M, Cardoso TM, Ramasawmy R et al (2011) IL-17 and regulatory cytokines (IL-10 and IL-27) in L. braziliensis infection. Parasite Immunol 33:132–136

Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL et al (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40:2830–2836

Li X, Yuan FL, Lu WG, Zhao YQ, Li CW et al (2010) The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochem Biophys Res Commun 397:131–135

Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

Castellano LR, Llaguno M, Silva MV, Machado JR, Correia D et al (2011) Immunophenotyping of circulating T cells in a mucosal leishmaniasis patient coinfected with HIV. Rev Soc Bras Med Trop 44:520–521

Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR et al (2005) Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73:7853–7859

Stillie R, Farooq SM, Gordon JR, Stadnyk AW (2009) The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol 86:529–543

Castellucci L, Jamieson SE, Miller EN, Menezes E, Oliveira J et al (2010) CXCR1 and SLC11A1 polymorphisms affect susceptibility to cutaneous leishmaniasis in Brazil: a case–control and family-based study. BMC Med Genet 11:10

Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 61:863–866

Cabrera M, Shaw MA, Sharples C, Williams H, Castes M et al (1995) Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med 182:1259–1264

Matos GI, Covas Cde J, Bittar Rde C, Gomes-Silva A, Marques F et al (2007) IFNG +874 T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-gamma production. BMC Infect Dis 7:33

Vargas-Inchaustegui DA, Hogg AE, Tulliano G, Llanos-Cuentas A, Arevalo J et al (2010) CXCL10 production by human monocytes in response to Leishmania braziliensis infection. Infect Immun 78:301–308

Lee EY, Lee ZH, Song YW (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8:379–383

Machado PR, Rosa ME, Costa D, Mignac M, Silva JS et al (2011) Reappraisal of the immunopathogenesis of disseminated leishmaniasis: in situ and systemic immune response. Trans R Soc Trop Med Hyg 105:438–444

Silveira FT, Lainson R, Corbett CE (2004) Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil: a review. Mem Inst Oswaldo Cruz 99:239–251

Khandelwal K, Bumb RA, Mehta RD, Kaushal H, Lezama-Davila C et al (2011) A patient presenting with diffuse cutaneous leishmaniasis (DCL) as a first indicator of HIV infection in India. AmJTrop Med Hyg 85:64–65

Niamba P, Goumbri-Lompo O, Traore A, Barro-Traore F, Soudre RT (2007) Diffuse cutaneous leishmaniasis in an HIV-positive patient in western Africa. Australas J Dermatol 48:32–34

Soong L (2008) Modulation of dendritic cell function by Leishmania parasites. J Immunol 180:4355–4360

Mukbel RM, Patten C Jr, Gibson K, Ghosh M, Petersen C et al (2007) Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. AmJTrop Med Hyg 76:669–675

Wang Y, Chen Y, Xin L, Beverley SM, Carlsen ED et al (2011) Differential microbicidal effects of human histone proteins H2A and H2B on Leishmania promastigotes and amastigotes. Infect Immun 79:1124–1133

Bhardwaj S, Srivastava N, Sudan R, Saha B (2010) Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol 2010:109189

McConville MJ, Naderer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 65:543–561

Bosetto MC, Giorgio S (2007) Leishmania amazonensis: multiple receptor-ligand interactions are involved in amastigote infection of human dendritic cells. Exp Parasitol 116:306–310

Boggiatto PM, Jie F, Ghosh M, Gibson-Corley KN, Ramer-Tait AE et al (2009) Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK. Am J Pathol 174:1818–1826

Wanderley JL, Moreira ME, Benjamin A, Bonomo AC, Barcinski MA (2006) Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 176:1834–1839

Wanderley JL, Barcinski MA (2010) Apoptosis and apoptotic mimicry: the Leishmania connection. Cell Mol Life Sci 67:1653–1659

Dos Santos TA, Portes Jde A, Damasceno-Sa JC, Caldas LA, de Souza W et al (2011) Phosphatidylserine exposure by Toxoplasma gondii is fundamental to balance the immune response granting survival of the parasite and of the host. PLoS One 6:e27867

Thanawastien A, Montor WR, Labaer J, Mekalanos JJ, Yoon SS (2009) Vibrio cholerae proteome-wide screen for immunostimulatory proteins identifies phosphatidylserine decarboxylase as a novel Toll-like receptor 4 agonist. PLoS Pathog 5:e1000556

Campanelli AP, Brodskyn CI, Boaventura V, Silva C, Roselino AM et al (2010) Chemokines and chemokine receptors coordinate the inflammatory immune response in human cutaneous leishmaniasis. Hum Immunol 71:1220–1227

Carrada G, Caneda C, Salaiza N, Delgado J, Ruiz A et al (2007) Monocyte cytokine and costimulatory molecule expression in patients infected with Leishmania mexicana. Parasite Immunol 29:117–126

Macedo AB, Sanchez-Arcila JC, Schubach AO, Mendonca SC, Marins-Dos-Santos A et al (2012) Multifunctional CD4 T cells in patients with American cutaneous leishmaniasis. Clin Exp Immunol 167:505–513

Hernandez-Ruiz J, Salaiza-Suazo N, Carrada G, Escoto S, Ruiz-Remigio A et al (2010) CD8 cells of patients with diffuse cutaneous leishmaniasis display functional exhaustion: the latter is reversed, in vitro, by TLR2 agonists. PLoS Negl Trop Dis 4:e871

Salaiza-Suazo N, Volkow P, Tamayo R, Moll H, Gillitzer R et al (1999) Treatment of two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana modifies the immunohistological profile but not the disease outcome. Trop Med Int Health 4:801–811

Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG et al (2010) Murine model of chronic L. (Viannia) panamensis infection: role of IL-13 in disease. Eur J Immunol 40:2816–2829

Martinez JE, Valderrama L, Gama V, Leiby DA, Saravia NG (2000) Clonal diversity in the expression and stability of the metastatic capability of Leishmania guyanensis in the golden hamster. J Parasitol 86:792–799

Pereira BA, Alves CR (2008) Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Vet Parasitol 158:239–255

Soong L, Chang CH, Sun J, Longley BJ Jr, Ruddle NH et al (1997) Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol 158:5374–5383

Wanasen N, Xin L, Soong L (2008) Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol 38:417–429

Soong L (2012) Subversion and utilization of host innate defense by Leishmania amazonensis. Frontiers Immunol 3:1–7

Novais FO, Santiago RC, Bafica A, Khouri R, Afonso L et al (2009) Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol 183:8088–8098

Vargas-Inchaustegui DA, Xin L, Soong L (2008) Leishmania braziliensis infection induces dendritic cell activation, ISG15 transcription, and the generation of protective immune responses. J Immunol 180:7537–7545

Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166:1912–1920

Silveira FT, Lainson R, Corbett CE (2005) Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 100:525–534

Xin L, Li Y, Soong L (2007) Role of interleukin-1β in activating the CD11chigh CD45RB− dendritic cell subset and priming Leishmania amazonensis-specific CD4+ T cells in vitro and in vivo. Infect Immun 75:5018–5026

Xin L, Wanderley JL, Wang Y, Vargas-Inchaustegui DA, Soong L (2011) The magnitude of CD4+ T-cell activation rather than TCR diversity determines the outcome of Leishmania infection in mice. Parasite Immunol 33:170–180

Castilho-Martins EA, Laranjeira da Silva MF, dos Santos MG, Muxel SM, Floeter-Winter LM (2011) Axenic Leishmania amazonensis promastigotes sense both the external and internal arginine pool distinctly regulating the two transporter-coding genes. PLoS One 6:e27818

Crescente JA, Silveira FT, Lainson R, Gomes CM, Laurenti MD et al (2009) A cross-sectional study on the clinical and immunological spectrum of human Leishmania (L.) infantum chagasi infection in the Brazilian Amazon region. Trans R Soc Trop Med Hyg 103:1250–1256

Silveira FT, Lainson R, Crescente JA, de Souza AA, Campos MB et al (2010) A prospective study on the dynamics of the clinical and immunological evolution of human Leishmania (L.) infantum chagasi infection in the Brazilian Amazon region. Trans R Soc Trop Med Hyg 104:529–535

Hailu A, Gramiccia M, Kager PA (2009) Visceral leishmaniasis in Aba-Roba, south-western Ethiopia: prevalence and incidence of active and subclinical infections. Ann Trop Med Parasitol 103:659–670

Hailu A, van Baarle D, Knol GJ, Berhe N, Miedema F et al (2005) T cell subset and cytokine profiles in human visceral leishmaniasis during active and asymptomatic or sub-clinical infection with Leishmania donovani. Clin Immunol 117:182–191

Hailu A, van der Poll T, Berhe N, Kager PA (2004) Elevated plasma levels of interferon (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC chemokines in visceral leishmaniasis. AmJTrop Med Hyg 71:561–567

Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA et al (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92:324–329

Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S (1998) Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177:815–818

Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM et al (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma [see comments]. J Clin Invest 91:1644–1648

Gidwani K, Jones S, Kumar R, Boelaert M, Sundar S (2011) Interferon-gamma release assay (modified QuantiFERON) as a potential marker of infection for Leishmania donovani, a proof of concept study. PLoS Negl Trop Dis 5:e1042

Melby PC, Valencia-Pacheco G, Andrade-Narvaez F (1996) Induction of macrophage killing of Leishmania donovani by human CD4+ T cell clones. Arch Med Res 27:473–479

Khader SA, Gopal R (2010) IL-17 in protective immunity to intracellular pathogens. Virulence 1:423–427

Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28:378–384

Wilson ME, Jeronimo SM, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 38:147–160

Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858

Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S et al (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204:805–817

Ansari NA, Saluja S, Salotra P (2006) Elevated levels of interferon-gamma, interleukin-10, and interleukin-6 during active disease in Indian kala azar. Clin Immunol 119:339–345

Kurkjian KM, Mahmutovic AJ, Kellar KL, Haque R, Bern C et al (2006) Multiplex analysis of circulating cytokines in the sera of patients with different clinical forms of visceral leishmaniasis. Cytometry A 69:353–358

Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J et al (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5:113

Verma S, Kumar R, Katara GK, Singh LC, Negi NS et al (2010) Quantification of parasite load in clinical samples of leishmaniasis patients: IL-10 level correlates with parasite load in visceral leishmaniasis. PLoS One 5:e10107

Gautam S, Kumar R, Maurya R, Nylen S, Ansari N et al (2011) IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J Infect Dis 204:1134–1137

Ansari NA, Kumar R, Gautam S, Nylen S, Singh OP et al (2011) IL-27 and IL-21 are associated with T cell IL-10 responses in human visceral leishmaniasis. J Immunol 186:3977–3985

Santos-Oliveira JR, Regis EG, Leal CR, Cunha RV, Bozza PT et al (2011) Evidence that lipopolysaccharide may contribute to the cytokine storm and cellular activation in patients with visceral leishmaniasis. PLoS Negl Trop Dis 5:e1198

Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

Rodrigues OR, Marques C, Soares-Clemente M, Ferronha MH, Santos-Gomes GM (2009) Identification of regulatory T cells during experimental Leishmania infantum infection. Immunobiology 214:101–111

Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D et al (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179:5592–5603

Maurya R, Kumar R, Prajapati VK, Manandhar KD, Sacks D et al (2010) Human visceral leishmaniasis is not associated with expansion or accumulation of Foxp3+ CD4 cells in blood or spleen. Parasite Immunol 32:479–483

Rai AK, Thakur CP, Singh A, Seth T, Srivastava SK et al (2012) Regulatory T cells suppress T cell activation at the pathologic site of human visceral leishmaniasis. PLoS One 7:e31551

Katara GK, Ansari NA, Verma S, Ramesh V, Salotra P (2011) Foxp3 and IL-10 expression correlates with parasite burden in lesional tissues of post kala azar dermal leishmaniasis (PKDL) patients. PLoS Negl Trop Dis 5:e1171

Malafaia G (2009) Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol 31:587–596

Collin S, Davidson R, Ritmeijer K, Keus K, Melaku Y et al (2004) Conflict and kala-azar: determinants of adverse outcomes of kala-azar among patients in southern Sudan. Clin Infect Dis 38:612–619

Kolaczinski JH, Hope A, Ruiz JA, Rumunu J, Richer M et al (2008) Kala-azar epidemiology and control, southern Sudan. Emerg Infect Dis 14:664–666

Marlet MV, Sang DK, Ritmeijer K, Muga RO, Onsongo J et al (2003) Emergence or re-emergence of visceral leishmaniasis in areas of Somalia, north-eastern Kenya, and south-eastern Ethiopia in 2000–01. Trans R Soc Trop Med Hyg 97:515–518

Maciel BL, Lacerda HG, Queiroz JW, Galvao J, Pontes NN et al (2008) Association of nutritional status with the response to infection with Leishmania chagasi. AmJTrop Med Hyg 79:591–598

Anstead GM, Chandrasekar B, Zhang Q, Melby PC (2003) Multinutrient undernutrition dysregulates the resident macrophage proinflammatory cytokine network, nuclear factor-kappaB activation, and nitric oxide production. J Leukoc Biol 74:982–991

Anstead GM, Chandrasekar B, Zhao W, Yang J, Perez LE et al (2001) Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69:4709–4718

Anstead GM, Zhang Q, Melby PC (2009) Malnutrition promotes prostaglandin over leukotriene production and dysregulates eicosanoid-cytokine crosstalk in activated resident macrophages. Prostaglandins Leukot Essent Fatty Acids 81:41–51

Malafaia G, Serafim TD, Silva ME, Pedrosa ML, Rezende SA (2009) Protein-energy malnutrition decreases immune response to Leishmania chagasi vaccine in BALB/c mice. Parasite Immunol 31:41–49

Cota GF, de Sousa MR, Rabello A (2011) Predictors of visceral leishmaniasis relapse in HIV-infected patients: a systematic review. PLoS Negl Trop Dis 5:e1153

Zhao C, Cantin R, Breton M, Papadopoulou B, Tremblay MJ (2005) DC-SIGN-mediated transfer of HIV-1 is compromised by the ability of Leishmania infantum to exploit DC-SIGN as a ligand. J Infect Dis 191:1665–1669

Zhao C, Papadopoulou B, Tremblay MJ (2004) Leishmania infantum enhances human immunodeficiency virus type-1 replication in primary human macrophages through a complex cytokine network. Clin Immunol 113:81–88

Zhao C, Papadopoulou B, Tremblay MJ (2004) Leishmania infantum promotes replication of HIV type 1 in human lymphoid tissue cultured ex vivo by inducing secretion of the proinflammatory cytokines TNF-alpha and IL-1 alpha. J Immunol 172:3086–3093

Garg R, Barat C, Ouellet M, Lodge R, Tremblay MJ (2009) Leishmania infantum amastigotes enhance HIV-1 production in cocultures of human dendritic cells and CD4 T cells by inducing secretion of IL-6 and TNF-alpha. PLoS Negl Trop Dis 3:e441

Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L et al (2003) Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol 41:5080–5084

Santos-Oliveira JR, Giacoia-Gripp CB, Alexandrino de Oliveira P, Amato VS, Lindoso JA et al (2010) High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load. BMC Infect Dis 10:358

Stanley AC, Engwerda CR (2007) Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol 85:138–147

Kaye PM, Svensson M, Ato M, Maroof A, Polley R et al (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201:239–253

Rosas LE, Snider HM, Barbi J, Satoskar AA, Lugo-Villarino G et al (2006) Cutting edge: STAT1 and T-bet play distinct roles in determining outcome of visceral leishmaniasis caused by Leishmania donovani. J Immunol 177:22–25

Beattie L, Phillips R, Brown N, Owens BM, Chauhan N et al (2011) Interferon regulatory factor 7 contributes to the control of Leishmania donovani in the mouse liver. Infect Immun 79:1057–1066

Paun A, Bankoti R, Joshi T, Pitha PM, Stager S (2011) Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog 7:e1001246

Ato M, Maroof A, Zubairi S, Nakano H, Kakiuchi T et al (2006) Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J Immunol 176:5486–5493

McFarlane E, Perez C, Charmoy M, Allenbach C, Carter KC et al (2008) Neutrophils contribute to development of a protective immune response during onset of infection with Leishmania donovani. Infect Immun 76:532–541

Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746

Murray HW, Xiang Z, Ma X (2006) Responses to Leishmania donovani in mice deficient in both phagocyte oxidase and inducible nitric oxide synthase. AmJTrop Med Hyg 74:1013–1015

Murray HW (2001) Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp Pathol 82:249–267

McFarlane E, Carter KC, McKenzie AN, Kaye PM, Brombacher F et al (2011) Endogenous IL-13 plays a crucial role in liver granuloma maturation during Leishmania donovani infection, independent of IL-4Ralpha-responsive macrophages and neutrophils. J Infect Dis 204:36–43

Stager S, Alexander J, Carter KC, Brombacher F, Kaye PM (2003) Both interleukin-4 (IL-4) and IL-4 receptor alpha signaling contribute to the development of hepatic granulomas with optimal antileishmanial activity. Infect Immun 71:4804–4807

Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31:2848–2856

Murray HW, Moreira AL, Lu CM, DeVecchio JL, Matsuhashi M et al (2003) Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis. J Infect Dis 188:458–464

Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A et al (2002) A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol 161:429–437

Ato M, Stager S, Engwerda CR, Kaye PM (2002) Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3:1185–1191

Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

Dalton JE, Maroof A, Owens BM, Narang P, Johnson K et al (2010) Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest 120:1204–1216

Yurdakul P, Dalton J, Beattie L, Brown N, Erguven S et al (2011) Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis. Am J Pathol 179:23–29

Cotterell SE, Engwerda CR, Kaye PM (2000) Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect Immun 68:1840–1848

Cotterell SE, Engwerda CR, Kaye PM (2000) Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-alpha. Blood 95:1642–1651

Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L et al (2012) Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 8:e1002417

Osorio Y, Travi BL, Renslo AR, Peniche AG, Melby PC (2011) Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system. PLoS Negl Trop Dis 5:e962

Nieto A, Dominguez-Bernal G, Orden JA, De La Fuente R, Madrid-Elena N et al (2011) Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Vet Res 42:39

Gifawesen C, Farrell JP (1989) Comparison of T-cell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infect Immun 57:3091–3096

Banerjee R, Kumar S, Sen A, Mookerjee A, Mukherjee P et al (2011) TGF-beta-regulated tyrosine phosphatases induce lymphocyte apoptosis in Leishmania donovani-infected hamsters. Immunol Cell Biol 89:466–474

Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like response. J Immunol 166:1912–1920

Perez LE, Chandrasekar B, Saldarriaga OA, Zhao W, Arteaga LT et al (2006) Reduced nitric oxide synthase 2 (NOS2) promoter activity in the Syrian hamster renders the animal functionally deficient in NOS2 activity and unable to control an intracellular pathogen. J Immunol 176:5519–5528

Saldarriaga OA, Travi BL, Ghosh Choudhury G, Melby PC (2012) Identification of hamster inducible Nitric Oxide Synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression. J Leukoc Biol 92:205–218

Biswas A, Bhattacharya A, Kar S, Das PK (2011) Expression of IL-10-triggered STAT3-dependent IL-4Ralpha is required for induction of arginase 1 in visceral leishmaniasis. Eur J Immunol 41:992–1003

Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305

Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J et al (2012) Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol 91:887–899

Nandan D, Reiner NE (2005) Leishmania donovani engages in regulatory interference by targeting macrophage protein tyrosine phosphatase SHP-1. Clin Immunol 114:266–277

Nandan D, Yi T, Lopez M, Lai C, Reiner NE (2002) Leishmania EF-1alpha activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem 277:50190–50197

Nandan D, Tran T, Trinh E, Silverman JM, Lopez M (2007) Identification of Leishmania fructose-1,6-bisphosphate aldolase as a novel activator of host macrophage Src homology 2 domain containing protein tyrosine phosphatase SHP-1. Biochem Biophys Res Commun 364:601–607

Gomez MA, Contreras I, Halle M, Tremblay ML, McMaster RW et al (2009) Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2:ra58

Shadab M, Ali N (2011) Evasion of host defence by Leishmania donovani: subversion of signaling pathways. Mol Biol Int 2011:343961

Kar S, Ukil A, Sharma G, Das PK (2010) MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms. J Leukoc Biol 88:9–20

Basu Ball W, Kar S, Mukherjee M, Chande AG, Mukhopadhyaya R et al (2011) Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis. J Immunol 187:1322–1332

Forget G, Gregory DJ, Whitcombe LA, Olivier M (2006) Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production. Infect Immun 74:6272–6279

Nandan D, Camargo de Oliveira C, Moeenrezakhanlou A, Lopez M, Silverman JM et al (2012) Myeloid cell IL-10 production in response to Leishmania involves inactivation of glycogen synthase kinase-3beta downstream of phosphatidylinositol-3 kinase. J Immunol 188:367–378

Sen S, Roy K, Mukherjee S, Mukhopadhyay R, Roy S (2011) Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in Leishmania donovani infected macrophages: role of membrane cholesterol. PLoS Pathog 7:e1002229

Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N et al (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–974

Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL (2012) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-Leishmania response. PLoS Pathog 8:e1002536

Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, Udey MC et al (2011) IL-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp Dermatol 20:76–78

Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, Udey MC et al (2011) A role for leukocyte-derived IL-1RA in DC homeostasis revealed by increased susceptibility of IL-1RA-deficient mice to cutaneous leishmaniasis. J Invest Dermatol 131:1650–1659

Gaur U, Roberts SC, Dalvi RP, Corraliza I, Ullman B et al (2007) An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J Immunol 179:8446–8453

Giudice A, Camada I, Leopoldo PT, Pereira JM, Riley LW et al (2007) Resistance of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis to nitric oxide correlates with disease severity in tegumentary leishmaniasis. BMC Infect Dis 7:7

Souza AS, Giudice A, Pereira JM, Guimaraes LH, de Jesus AR et al (2010) Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-alpha production. BMC Infect Dis 10:209

Sarkar A, Ghosh S, Pakrashi S, Roy D, Sen S et al (2012) Leishmania strains causing self-healing cutaneous leishmaniasis have greater susceptibility towards oxidative stress. Free Radic Res 46:665–673

Nandan D, Lo R, Reiner NE (1999) Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infect Immun 67:4055–4063

Prive C, Descoteaux A (2000) Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. Eur J Immunol 30:2235–2244

Ghosh S, Bhattacharyya S, Das S, Raha S, Maulik N et al (2001) Generation of ceramide in murine macrophages infected with Leishmania donovani alters macrophage signaling events and aids intracellular parasitic survival. Mol Cell Biochem 223:47–60

Chandra D, Naik S (2008) Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism. Clin Exp Immunol 154:224–234

Ghosh S, Bhattacharyya S, Sirkar M, Sa GS, Das T et al (2002) Leishmania donovani suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: involvement of extracellular signal-regulated kinase. Infect Immun 70:6828–6838

Ray M, Gam AA, Boykins RA, Kenney RT (2000) Inhibition of interferon-gamma signaling by Leishmania donovani. J Infect Dis 181:1121–1128

Matte C, Descoteaux A (2010) Leishmania donovani amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5. Infect Immun 78:3736–3743

Forget G, Gregory DJ, Olivier M (2005) Proteasome-mediated degradation of STAT1alpha following infection of macrophages with Leishmania donovani. J Biol Chem 280:30542–30549

Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 29:3737–3744

Holm A, Tejle K, Gunnarsson T, Magnusson KE, Descoteaux A et al (2003) Role of protein kinase C alpha for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 302:653–658

Dey R, Majumder N, Bhattacharjee S, Majumdar SB, Banerjee R et al (2007) Leishmania donovani-induced ceramide as the key mediator of Akt dephosphorylation in murine macrophages: role of protein kinase Czeta and phosphatase. Infect Immun 75:2136–2142

Dey R, Sarkar A, Majumder N, Bhattacharyya Majumdar S, Roychoudhury K et al (2005) Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect Immun 73:8334–8344

Bhattacharyya S, Ghosh S, Sen P, Roy S, Majumdar S (2001) Selective impairment of protein kinase C isotypes in murine macrophage by Leishmania donovani. Mol Cell Biochem 216:47–57

Chan MM, Adapala N, Chen C (2012) Peroxisome proliferator-activated receptor-gamma-mediated polarization of macrophages in Leishmania infection. PPAR Res 2012:796235

Cheekatla SS, Aggarwal A, Naik S (2012) mTOR signaling pathway regulates the IL-12/IL-10 axis in Leishmania donovani infection. Med Microbiol Immunol 201:37–46