Immunomodulation of human monocytes following exposure to Lutzomyia intermedia saliva
Tóm tắt
Sand fly saliva contains potent and complex pharmacologic molecules that are able to modulate the host's hemostatic, inflammatory, and immune systems. In this study, we evaluated the effects of salivary gland sonicate (SGS) of Lutzomyia intermedia, the natural vector of Leishmania braziliensis, on monocytes obtained from the peripheral blood mononuclear cells (PBMC) of healthy volunteers. We investigated the effects of sand fly saliva on cytokine production and surface molecule expression of LPS-stimulated human monocytes uninfected or infected with L. braziliensis. Pre-treatment of non-infected human monocytes with L. intermedia SGS followed by LPS-stimulation led to a significant decrease in IL-10 production accompanied by a significant increase in CD86, CD80, and HLA-DR expression. Pre-treatment with SGS followed by LPS stimulation and L. braziliensis infection led to a significant increase in TNF-α, IL-6, and IL-8 production without significant alterations in co-stimulatory molecule expression. However, pre-treatment with L. intermedia SGS did not result in significant changes in the infection rate of human monocytes. Our data indicate that L. intermedia saliva is able to modulate monocyte response, and, although this modulation is dissociated from enhanced infection with L. braziliensis, it may be associated with successful parasitism.
Tài liệu tham khảo
Bittencourt A, Barral-Netto M: Leishmaniasis. Tropical Pathology. Edited by: Doerr W SG. 1995, Springer, Berlin , 8: 597-651. 2nd
Aebischer T, Moody SF, Handman E: Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect Immun. 1993, 61 (1): 220-226.
Schubach A, Marzochi MC, Cuzzi-Maya T, Oliveira AV, Araujo ML, Oliveira AL, Pacheco RS, Momen H, Conceicao-Silva F, Coutinho SG, Marzochi KB: Cutaneous scars in American tegumentary leishmaniasis patients: a site of Leishmania (Viannia) braziliensis persistence and viability eleven years after antimonial therapy and clinical cure. Am J Trop Med Hyg. 1998, 58 (6): 824-827.
Mendonca MG, de Brito ME, Rodrigues EH, Bandeira V, Jardim ML, Abath FG: Persistence of leishmania parasites in scars after clinical cure of American cutaneous leishmaniasis: is there a sterile cure?. J Infect Dis. 2004, 189 (6): 1018-1023. 10.1086/382135.
Ribeiro JM: Blood-feeding arthropods: live syringes or invertebrate pharmacologists?. Infect Agents Dis. 1995, 4 (3): 143-152.
Titus RG, Ribeiro JM: Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988, 239 (4845): 1306-1308. 10.1126/science.3344436.
Samuelson J, Lerner E, Tesh R, Titus R: A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med. 1991, 173 (1): 49-54. 10.1084/jem.173.1.49.
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL: Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998, 188 (10): 1941-1953. 10.1084/jem.188.10.1941.
Norsworthy NB, Sun J, Elnaiem D, Lanzaro G, Soong L: Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect Immun. 2004, 72 (3): 1240-1247. 10.1128/IAI.72.3.1240-1247.2004.
Hall LR, Titus RG: Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. J Immunol. 1995, 155 (7): 3501-3506.
Theodos CM, Titus RG: Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol. 1993, 15 (8): 481-487. 10.1111/j.1365-3024.1993.tb00634.x.
Waitumbi J, Warburg A: Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages. Infect Immun. 1998, 66 (4): 1534-1537.
de Moura TR, Oliveira F, Novais FO, Miranda JC, Clarencio J, Follador I, Carvalho EM, Valenzuela JG, Barral-Netto M, Barral A, Brodskyn C, de Oliveira CI: Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva. PLoS neglected tropical diseases. 2007, 1 (2): e84-10.1371/journal.pntd.0000084.
Rogers KA, Titus RG: Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003, 25 (3): 127-134. 10.1046/j.1365-3024.2003.00623.x.
Costa DJ, Favali C, Clarencio J, Afonso L, Conceicao V, Miranda JC, Titus RG, Valenzuela J, Barral-Netto M, Barral A, Brodskyn CI: Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infect Immun. 2004, 72 (3): 1298-1305. 10.1128/IAI.72.3.1298-1305.2004.
Andrade BB, de Oliveira CI, Brodskyn CI, Barral A, Barral-Netto M: Role of sand fly saliva in human and experimental leishmaniasis: current insights. Scandinavian journal of immunology. 2007, 66 (2-3): 122-127. 10.1111/j.1365-3083.2007.01964.x.
Rohousova I, Volf P, Lipoldova M: Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. 2005, 27 (12): 469-473. 10.1111/j.1365-3024.2005.00787.x.
Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JM: Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med. 2001, 194 (3): 331-342. 10.1084/jem.194.3.331.
Buelens C, Willems F, Delvaux A, Pierard G, Delville JP, Velu T, Goldman M: Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. European journal of immunology. 1995, 25 (9): 2668-2672. 10.1002/eji.1830250940.
Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N: Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science. 1993, 261 (5127): 1448-1451. 10.1126/science.8367726.
Elloso MM, Scott P: Expression and contribution of B7-1 (CD80) and B7-2 (CD86) in the early immune response to Leishmania major infection. J Immunol. 1999, 162 (11): 6708-6715.
Favali C, Costa D, Afonso L, Conceicao V, Rosato A, Oliveira F, Costa J, Barral A, Barral-Netto M, Brodskyn CI: Role of costimulatory molecules in immune response of patients with cutaneous leishmaniasis. Microbes Infect. 2005, 7 (1): 86-92. 10.1016/j.micinf.2004.09.015.
Machado P, Kanitakis J, Almeida R, Chalon A, Araujo C, Carvalho EM: Evidence of in situ cytotoxicity in American cutaneous leishmaniasis. Eur J Dermatol. 2002, 12 (5): 449-451.
Antonelli LR, Dutra WO, Almeida RP, Bacellar O, Carvalho EM, Gollob KJ: Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis. Immunology letters. 2005, 101 (2): 226-230. 10.1016/j.imlet.2005.06.004.
Brodie TM, Smith MC, Morris RV, Titus RG: Immunomodulatory Effects of the Lutzomyia longipalpis Salivary Gland Protein Maxadilan on Mouse Macrophages. Infect Immun. 2007, 75 (5): 2359-2365. 10.1128/IAI.01812-06.
Scott P: The role of TH1 and TH2 cells in experimental cutaneous leishmaniasis. Exp Parasitol. 1989, 68 (3): 369-372. 10.1016/0014-4894(89)90120-3.
Diehl S, Rincon M: The two faces of IL-6 on Th1/Th2 differentiation. Molecular immunology. 2002, 39 (9): 531-536. 10.1016/S0161-5890(02)00210-9.
Laskay T, van Zandbergen G, Solbach W: Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes?. Trends Microbiol. 2003, 11 (5): 210-214.
Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D: A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. 2000, 165 (2): 969-977.
Pompeu MM, Brodskyn C, Teixeira MJ, Clarencio J, Van Weyenberg J, Coelho IC, Cardoso SA, Barral A, Barral-Netto M: Differences in gamma interferon production in vitro predict the pace of the in vivo response to Leishmania amazonensis in healthy volunteers. Infect Immun. 2001, 69 (12): 7453-7460. 10.1128/IAI.69.12.7453-7460.2001.
Soares MB, Titus RG, Shoemaker CB, David JR, Bozza M: The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. J Immunol. 1998, 160 (4): 1811-1816.
Titus RG, Bishop JV, Mejia JS: The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 2006, 28 (4): 131-141.
Modi GB, Tesh RB: A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol. 1983, 20 (5): 568-569.
Castilho TM, Shaw JJ, Floeter-Winter LM: New PCR assay using glucose-6-phosphate dehydrogenase for identification of Leishmania species. J Clin Microbiol. 2003, 41 (2): 540-546. 10.1128/JCM.41.2.540-546.2003.
McMahon-Pratt D, Bennett E, David JR: Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J Immunol. 1982, 129 (3): 926-927.