Immunization of mice with soluble lysate of interferon gamma expressing Plasmodium berghei ANKA induces high IFN-γ production

Ebenezer Taylor1,2, Faith Onditi2, Naomi Maina1,3, Hastings Ozwara2
1Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya
2Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), Nairobi, Kenya
3Department of Biochemistry, School of Biomedical sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya

Tóm tắt

Efforts in search of lasting malaria vaccine have led to the development of transgenic rodent malaria parasites. As a result, wild type Plasmodium berghei ANKA (WTPbA) has recently been transformed to express mouse interferon gamma (mIFN-γ). The immunomodulatory effect of this transgenic parasite on WTPbA infection has been demonstrated. However, the protective immune responses after repeated immunization with soluble lysate of this parasite has not been investigated. Soluble lysate of transgenic PbA (TPbA) was prepared and concentration of IFN-γ in lysate determined by ELISA. Four groups of 20 BALB/c mice each (two treatment groups and two control groups) were setup. Treatment Groups 1 and 2 were primed (at day 0) with lysate of TPbA containing 75 pg/ml IFN-γ and live TPbA parasites respectively. Infection in Group 2 mice was cured with Coartem™ at 450 mg/kg for 3 days. At day 14 post-priming, both groups were boosted twice at day 14 and day 28 with lysate of TPbA containing 75 pg/ml IFN-γ and 35 pg/ml IFN-γ respectively. Blood and spleen samples were collected at day 0, day 14, day 21 and day 28 for preparation of serum and cell cultures respectively. Serum IgG and cytokines (TNF-α and IFN-γ) levels in culture supernatant were measred by ELISA.Survivorship and parasitemia were daily monitored for 21 days. Data were statistically analyzed using ANOVA student’s t test. A p value of <0.05 was considered significant. At day 28 post-priming, IFN-γ production in Group 1 was tenfold higher than in RBC control group (p = 0.070) There was significant difference in IFN-γ production among the groups at day 28 (p < 0.0001). TNF-α production in Group 1 mice increased fourfold in Group 2 mice from day 14 to day 28 post-immunization (p = 0.0005). There was no significant effect on serum IgG production. Mice in treatment groups survived 5 to 4 days longer compared to non-immunized group. The study has demonstrated that, repeated immunization with soluble lysate of TPbA induces Th 1 response leading to increased IFN-γ and TNF-γ production.

Tài liệu tham khảo

World Health Organization. World malaria report. 2015. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/. Accesesed 11 Dec 2016. Gallup JL, Sachs JD. The economic burden of malaria. AmJTrop Med Hyg. 2001;64:85–96. Hanboonkunupakarn B, White NJ. The threat of antimalarial drug resistance. Trop Dis Travel Med Vaccin. 2016;2:10. World Health Organization. Malaria vector insecticide resistance: overview of resistance status. 2013. http://www.who.int/gho/malaria/insecticide_resistance/en/. Accessed 3 Feb 2016. Ouattara A, Laurens MB. Vaccines against malaria. Clin Infect Dis. 2015;60(6):930–6. Schwenk RJ, Richie TL. Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol. 2011;27(7):306–14. De Souza JB, Williamson KH, Otani T, Playfair JH. Early gamma interferon responses in lethal and nonlethal murine blood-stage malaria. Infect Immun. 1997;65(5):1593–8. Miller JL, Sack BK, Baldwin M, Vaughan AM, Kappe SHI. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 2014;7(2):436–47. Yoneto T, Yoshimoto T, Wang CR, Takahama Y, Tsuji M, Waki S, et al. Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. Infect Immun. 1999;67(5):2349–56. Perlaza BL, Sauzet JP, Brahimi K, BenMohamed L, Druilhe P. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity. Malar J. 2011;10(1):27. McCall MBB, Sauerwein RW. Interferon-γ--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010;88(6):1131–43. Mogaka S, Muriithi C, Onditi F, Mumo R, Maina N, Waihenya R, Ozwara H. Plasmodium berghei is immunomodulated by transgenic mouse interferon gamma leading to enhanced malaria protection in mice. IOSR-JPBS. 2015; doi:10.9790/3008-1021111119. Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc. 2006;1(1):346–56. Doolan DL. Maintenance of the Plasmodium berghei life cycle. In: Sinden RE, Butcher GA, Beetsma AL, editors. Malaria methods and protocols. New Jersey: Humana Press Inc; 2002. p. 25. de Oca MM, Engwerda C, Haque A. Plasmodium berghei ANKA (PbA) infection of C57BL/6J mice: a model of severe malaria. Clifton: In Methods in molecular biology; 2013. p. 203–13. Somsak V, Srichairatanakool S, Kamchonwongpaisan S, Yuthavong Y, Uthaipibull C. Small-scale in vitro culture and purification of Plasmodium berghei for transfection experiment. Mol Biochem Parasitol. 2011;177(2):156–9. Ringwald P, Bickii J, Basco L. In vitro activity of antimalarials against clinical isolates of Plasmodium falci parum in Yaounde. Cameroon Am J Trop Med Hyg. 1996;55:254–8. Yole DS, Shamala KT, Kithome K, Gicheru MM. Studies on the interaction of Schistosoma mansoni and Leishmania major in experimentally infected Balb/c mice. Afr J Health Sci. 2007;14:80–5. Małaczewska J. The splenocyte proliferative response and cytokine secretion in mice after 28-day oral administration of silver nanocolloid. Pol J Vet Sci. 2014;17(1):27–35. MacKenzie JJ, Gómez ND, Bhattacharjee S, Mann S, Haldar K. A Plasmodium falciparum host-targeting motif functions in export during blood stage infection of the rodent malarial parasite Plasmodium berghei. PLoS One. 2008;3(6):2405. Delneste Y, Charbonnier P, Herbault N, Magistrelli G, Caron G, Bonnefoy JY, et al. Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages. Blood. 2003;101(1):143–50. Choudhury HR, Sheikh NA, Bancroft GJ, Katz DR, de Souza JB. Early nonspecific immune responses and immunity to blood-stage nonlethal Plasmodium yoelii malaria. Infect Immun. 2000;68(11):6127–32. Inoue SI, Niikura M, Mineo S, Kobayashi F. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria. Front Immunol. 2013;4:258. Schindler H, Lutz MB, Röllinghoff M, Bogdan C. The production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J Immunol. 2001;166(5):3075–82. Zhu J, Paul WE. CD4 T cells : fates, functions, and faults. Blood. 2015;112(5):1557–70. Megnekou R, Staalsoe T, Hviid L, Rogerson S, Duffy P, Leke R, et al. Cytokine response to pregnancy-associated recrudescence of Plasmodium berghei infection in mice with pre-existing immunity to malaria. Malar J. 2013;12(1):387. Megnekou R, Hviid L, Staalsoe T. Variant-specific immunity to Plasmodium berghei in pregnant mice. Infect Immun. 2009;77(5):1827–34. Langhorne J, Quin SJ, Sanni L. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. In: Troye-Blomberg M, Perlmann P, editors. Malaria Immunology. 3nd ed. Basel: Karger; 2002. p. 204–28. Taylor-Robinson A, Phillips R, Severn A, Moncada S, Liew F. The role of TH1 and TH2 cells in a rodent malaria infection. Science. 1993;260(5116):1931–4. Achtman AH, Stephens R, Cadman ET, Harrison V, Langhorne J. Malaria-specific antibody responses and parasite persistence after infection of mice with Plasmodium chabaudi chabaudi. Parasite Immunol. 2007;29(9):435–44. de Souza J. Protective immunity against malaria after vaccination. Parasite Immunol. 2014;36(3):131–9. Korbel DS, Finney CO, Riley EM. Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol. 2004;34:1517–28.