Immunity to malaria: more questions than answers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. & Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).
Snow, R.W., Trape, J.F. & Marsh, K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol. 17, 593–597 (2001).
Collins, W.E., Jeffery, G.M. & Roberts, J.M. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am. J. Trop. Med. Hyg. 68, 410–412 (2003).
Krause, D.R. et al. Characterization of the antibody response against Plasmodium falciparum erythrocyte membrane protein-1 in human volunteers. Infect. Immun. 75, 5967–5973 (2007).
Miller, J.M. et al. Malaria, intestinal parasites, and schistosomiasis among Barawan Somali refugees resettling to the United States: a strategy to reduce morbidity and decrease the risk of imported infections. Am. J. Trop. Med. Hyg. 62, 115–121 (2000).
Ciuca, M., Bailif, L. & Chelarescu-Vieru, M. Immunity in malaria. Trans. R. Soc. Trop. Med. Hyg. 27, 619–622 (1934).
Gupta, S., Snow, R.W., Donnelly, C.A., Marsh, K. & Newbold, C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5, 340–343 (1999).
Owusu-Agyei, S. et al. Incidence of symptomatic and asymptomatic Plasmodium falciparum infection following curative therapy in adult residents of northern Ghana. Am. J. Trop. Med. Hyg. 65, 197–203 (2001).
Bruce-Chwatt, L.J. A longitudinal survey of natural malaria infection in a group of West African Adults. West Afr. Med. J. 12, 141–173 (1963).
Hoffman, S.L. et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002).
Alonso, P.L. et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366, 2012–2018 (2005).
Schofield, L. et al. γ Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330, 664–666 (1987).
Langhorne, J., Cross, C., Seixas, E., Li, C. & von der Weid, T. A role for B cells in the development of T cell helper function in a malaria infection in mice. Proc. Natl. Acad. Sci. USA 95, 1730–1734 (1998).
Pombo, D.J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).
Cohen, S., McGregor, I.A. & Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961).
Sabchareon, A. et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am. J. Trop. Med. Hyg. 45, 297–308 (1991).
Blackman, M.J., Heidrich, H.G., Donachie, S., McBride, J.S. & Holder, A.A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172, 379–382 (1990).
Bouharoun-Tayoun, H., Oeuvray, C., Lunel, F. & Druilhe, P. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J. Exp. Med. 182, 409–418 (1995).
Bull, P.C. et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4, 358–360 (1998).
Jafarshad, A. et al. A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcγRII and FcγRIII. J. Immunol. 178, 3099–3106 (2007).
McIntosh, R.S. et al. The importance of human FcγRI in mediating protection to malaria. PLoS Pathog. 3, e72 (2007).
Rotman, H.L., Daly, T.M., Clynes, R. & Long, C.A. Fc receptors are not required for antibody-mediated protection against lethal malaria challenge in a mouse model. J. Immunol. 161, 1908–1912 (1998).
Taylor, P.R., Seixas, E., Walport, M.J., Langhorne, J. & Botto, M. Complement contributes to protective immunity against reinfection by Plasmodium chabaudi chabaudi parasites. Infect. Immun. 69, 3853–3859 (2001).
Gray, J.C. et al. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin. Chem. 53, 1244–1253 (2007).
Vanderberg, J. et al. Assessment of antibody protection against malaria sporozoites must be done by mosquito injection of sporozoites. Am. J. Pathol. 171, 1405–1406 (2007).
Fonseca, L., Seixas, E., Butcher, G. & Langhorne, J. Cytokine responses of CD4+ T cells during a Plasmodium chabaudi chabaudi (ER) blood-stage infection in mice initiated by the natural route of infection. Malar. J. 6, 77–86 (2007).
Mueller, A.K., Labaied, M., Kappe, S.H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).
Marsh, K. et al. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332, 1399–1404 (1995).
Clark, I.A. Does endotoxin cause both the disease and parasite death in acute malaria and babesiosis? Lancet 312, 75–77 (1978).
Taverne, J., Tavernier, J., Fiers, W. & Playfair, J.H. Recombinant tumour necrosis factor inhibits malaria parasites in vivo but not in vitro. Immunol. Lett. 67, 1–4 (1987).
Kwiatkowski, D. Tumour necrosis factor, fever and fatality in falciparum malaria. Immunol. Lett. 25, 213–216 (1990).
Lyke, K.E. et al. Serum levels of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor α, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 72, 5630–5637 (2004).
Ochiel, D.O. et al. Differential regulation of beta-chemokines in children with Plasmodium falciparum malaria. Infect. Immun. 73, 4190–4197 (2005).
Prakash, D. et al. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J. Infect. Dis. 194, 198–207 (2006).
Kurtzhals, J.A. et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351, 1768–1772 (1998).
Awandare, G.A. et al. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. J. Infect. Dis. 194, 1438–1446 (2006).
John, C.C., Opika-Opoka, R., Byarugaba, J., Idro, R. & Boivin, M.J. Low levels of RANTES are associated with mortality in children with cerebral malaria. J. Infect. Dis. 194, 837–845 (2006).
Were, T. et al. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica 91, 1396–1399 (2006).
Bayley, J.P., Ottenhoff, T.H. & Verweij, C.L. Is there a future for TNF promoter polymorphisms? Genes Immun. 5, 315–329 (2004).
Carpenter, D. et al. Immunogenetic control of antibody responsiveness in a malaria endemic area. Hum. Immunol. 68, 165–169 (2007).
Henri, S. et al. Description of three new polymorphisms in the intronic and 3′UTR regions of the human interferon gamma gene. Genes Immun. 3, 1–4 (2002).
Juliger, S., Bongartz, M., Luty, A.J., Kremsner, P.G. & Kun, J.F. Functional analysis of a promoter variant of the gene encoding the interferon-γ receptor chain I. Immunogenetics 54, 675–680 (2003).
Kurtzhals, J.A. et al. The cytokine balance in severe malarial anemia. J. Infect. Dis. 180, 1753–1755 (1999).
Li, C., Sanni, L.A., Omer, F., Riley, E. & Langhorne, J. Pathology and mortality of Plasmodium chabaudi chabaudi infection in IL-10-deficient mice is ameliorated by anti-TNF-α and exacerbated by anti-TGF-β antibodies. Infect. Immun. 71, 4850–4856 (2003).
Omer, F.M., de Souza, J.B. & Riley, E.M. Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J. Immunol. 171, 5430–5436 (2003).
Lamb, T.J., Brown, D.E., Potocnik, A.J. & Langhorne, J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev. Mol. Med. 8, 1–22 (2006).
Engwerda, C.R. et al. Locally up-regulated lymphotoxin α, not systemic tumor necrosis factor α, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195, 1371–1377 (2002).
Engwerda, C.R. & Good, M.F. Interactions between malaria parasites and the host immune system. Curr. Opin. Immunol. 17, 381–387 (2005).
Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67, 4435–4442 (1999).
Veldhoen, M. & Stockinger, B. TGFβ1, a “Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol. 27, 358–361 (2006).
Baruch, D.I., Gormely, J.A., Ma, C., Howard, R.J. & Pasloske, B.L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 93, 3497–3502 (1996).
Ndungu, F.M. et al. CD4 T cells from malaria-nonexposed individuals respond to the CD36-binding domain of Plasmodium falciparum erythrocyte membrane protein-1 via an MHC class II-TCR-independent pathway. J. Immunol. 176, 5504–5512 (2006).
Urban, B. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).
Krishnegowda, G. et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280, 8606–8616 (2005).
Nebl, T., De Veer, M.J. & Schofield, L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 130 Suppl, S45–S62 (2005).
Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25 (2005).
Parroche, P. et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 104, 1919–1924 (2007).
Adachi, K. et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. 167, 5928–5934 (2001).
Franklin, B.S. et al. MyD88-dependent activation of dendritic cells and CD4+ T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes Infect. 9, 881–890 (2007).
Togbe, D. et al. Murine cerebral malaria development is independent of Toll-like receptor signaling. Am. J. Pathol. 170, 1640–1648 (2007).
Mockenhaupt, F.P. et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. J. Commun. Dis. 38, 230–245 (2006).
Mockenhaupt, F.P. et al. Common polymorphisms of Toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 194, 184–188 (2006).
Khor, C.C. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39, 523–528 (2007).
Mackinnon, M.J., Gaffney, D.J. & Read, A.F. Virulence in rodent malaria: host genotype by parasite genotype interactions. Infect. Genet. Evol. 1, 287–296 (2002).
Wykes, M.N., Liu, X.Q., Jiang, S., Hirunpetcharat, C. & Good, M.F. Systemic tumor necrosis factor generated during lethal Plasmodium infections impairs dendritic cell function. J. Immunol. 179, 3982–3987 (2007).
Deloron, P. & Chougnet, C. Is immunity to malaria really short-lived? Parasitol. Today 8, 375–378 (1992).
Achtman, A.H., Bull, P.C., Stephens, R. & Langhorne, J. Longevity of the immune response and memory to blood-stage malaria infection. Curr. Top. Microbiol. Immunol. 297, 71–102 (2005).
Kinyanjui, S.M., Conway, D.J., Lanar, D.E. & Marsh, K. IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar. J. 6, 82–90 (2007).
Migot, F. et al. Human immune responses to the Plasmodium falciparum ring-infected erythrocyte surface antigen (Pf155/RESA) after a decrease in malaria transmission in Madagascar. Am. J. Trop. Med. Hyg. 48, 432–439 (1993).
Dorfman, J.R. et al. B cell memory to 3 Plasmodium falciparum blood-stage antigens in a malaria-endemic area. J. Infect. Dis. 191, 1623–1630 (2005).
Sano, G. et al. Swift development of protective effector functions in naive CD8+ T cells against malaria liver stages. J. Exp. Med. 194, 173–180 (2001).
Stephens, R. et al. Malaria-specific transgenic CD4+ T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 106, 1676–1684 (2005).
Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat. Med. 13, 1035–1041 (2007).
Carvalho, L.H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat. Med. 8, 166–170 (2002).
Scheller, L.F. & Azad, A.F. Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. Proc. Natl. Acad. Sci. USA 92, 4066–4068 (1995).
Berenzon, D. et al. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J. Immunol. 171, 2024–2034 (2003).
Morrot, A., Hafalla, J.C., Cockburn, I.A., Carvalho, L.H. & Zavala, F. IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. J. Exp. Med. 202, 551–560 (2005).
Mount, A.M. et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet 363, 1860–1867 (2004).
Seixas, E., Cross, C., Quin, S. & Langhorne, J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur. J. Immunol. 31, 2970–2978 (2001).
Sponaas, A.M. et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med. 203, 1427–1433 (2006).
Elliott, S.R. et al. Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1. Infect. Immun. 75, 3621–3632 (2007).
Ocana-Morgner, C., Mota, M. & Rodriguez, A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197, 143–151 (2003).
Urban, B. et al. Peripheral blood dendritic cells in children with acute Plasmoium falciparum malaria. Blood 98, 2859–2861 (2001).
Xu, H. et al. The mechanism and significance of deletion of parasite-specific CD4+ T cells in malaria infection. J. Exp. Med. 195, 881–892 (2002).
Foulds, K.E., Wu, C.Y. & Seder, R.A. Th1 memory: implications for vaccine development. Immunol. Rev. 211, 58–66 (2006).
Darrah, P.A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).
Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).
Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).
Radziewicz, H. et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol. 81, 2545–2553 (2007).
Wykes, M.N., Zhou, Y.H., Liu, X.Q. & Good, M.F. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. J. Immunol. 175, 2510–2516 (2005).
Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 8, 419–429 (2007).
Moran, M. et al. The Malaria Product Pipeline: Planning For The Future (The George Institute for International Health, Sidney, Australia, 2007).
Marsh, K. & Kinyanjui, S. Immune effector mechanisms in malaria. Parasite Immunol. 28, 51–60 (2006).
Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).
O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Natl. Rev. Immunol. 7, 353–364 (2007).
Imler, J.L. & Hoffmann, J.A. Toll signaling: the TIReless quest for specificity. Nat. Immunol. 4, 105–106 (2003).
West, A.P., Koblansky, A.A. & Ghosh, S. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol. 22, 409–437 (2006).
Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).
Skorokhod, O.A., Alessio, M., Mordmuller, B., Arese, P. & Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol. 173, 4066–4074 (2004).
Urban, B.C., Willcox, N. & Roberts, D.J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl. Acad. Sci. USA 98, 8750–8755 (2001).