Immune response in dairy cattle against combined foot and mouth disease and haemorrhagic septicemia vaccine under field conditions

Springer Science and Business Media LLC - Tập 17 - Trang 1-12 - 2021
Anucha Muenthaisong1, Amarin Rittipornlertrak1, Boondarika Nambooppha1, Pallop Tankaew2, Thanya Varinrak2, Marutpong Pumpuang3, Korkiat Muangthai3, Kheemchompu Atthikanyaphak3, Tawatchai Singhla1, Kidsadagon Pringproa1, Veerasak Punyapornwithaya1, Takuo Sawada4, Nattawooti Sthitmatee1,5
1Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
2Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
3Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, Nakhon Ratchasima, Thailand
4Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
5Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand

Tóm tắt

Foot-and-mouth disease (FMD) and Haemorrhagic septicemia (HS) are two important diseases that are known to have caused significant economic losses to the cattle industry. Accordingly, vaccinations have been recognized as an efficient method to control and prevent both of the above-mentioned diseases. This study aimed to determine the immune response to FMD virus antigens and the recombinant outer membrane protein of HS (rOmpH) of Pasteurella multocida in cattle administered as a combination vaccine and compare antibody titers with the two vaccines given independently, under field conditions. Dairy cattle were divided into three groups. Each group was immunized with different vaccine types according to the vaccination program employed in this study. Antibody responses were determined by indirect ELISA, liquid phase blocking ELISA (LPB-ELISA) and viral neutralization test (VNT). Furthermore, the cellular immune responses were measured by lymphocyte proliferation assay (LPA). The overall antibody titers to HS and FMDV were above cut-off values for the combined FMD-HS vaccine in this study.The mean antibody titer against HS after the first immunization in the combined FMD-HS vaccine groups was higher than in the HS vaccine groups. However, no statistically significant differences (p > 0.05) were observed between groups. Likewise, the antibody titer to the FMDV serotypes O/TAI/189/87 and Asia 1/TAI/85 determined by LPB-ELISA in the combined vaccine were not statistically significantly different when compared to the FMD vaccine groups. However, the mean VNT antibody titer of combined vaccine against serotype O was significantly higher than the VN titer of FMD vaccine groups (p < 0.05). Moreover, the LPA results showed that all vaccinated groups displayed significantly higher than the negative control (p < 0.05). Nevertheless, no differences in the lymphocyte responses were observed in comparisons between the groups (p > 0.05). The combined FMD-HS vaccine formulated in this study could result in high both antibody and cellular immune responses without antigenic competition. Therefore, the combined FMD-HS vaccine can serve as an alternative vaccine against both HS and FMD in dairy cattle under field conditions.

Tài liệu tham khảo

World Organization for Animal Health (OIE).Foot and mouth disease (infection with foot and mouth disease virus).In:Manual of diagnostic tests and vaccines for terrestrial animals.OIE; 2018, Available at:https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.08_FMD.pdf. Accessed 08 Oct 2020. Knight-Jones TJ, Rushton J. The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur. Prev Vet Med. 2013;112:161–73. De Alwis M. Hemorrhagic septicaemia. Australian Centre for International Agriculture Research Monographs. 1999;57:23. World Organization for Animal Health (OIE).Haemorrhagic septicemia.In:Manual of diagnostic tests and vaccines for terrestrial animals.OIE; 2018, Available at:https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.04.10_HAEMORRHAGIC_SEPTICAEMIA.pdf. Accessed 08 Oct 2020. Shome R, Deka RP, Sahay S, Grace D, Lindahl JF. Seroprevalence of hemorrhagic septicemia in dairy cows in Assam, India. Infect Ecol Epidemiol. 2019;9:1604064. Muenthaisong A, Nambooppha B, Rittipornlertrak A, Tankaew P, Varinrak T, Muangthai K, et al An Intranasal Vaccination with a Recombinant Outer Membrane Protein H against Haemorrhagic Septicemia in Swamp Buffaloes.Vet Med Int 2020, 2020:3548973. Benkirane A, De Alwis M. Haemorrhagic septicaemia, its significance, prevention and control in Asia. Vet Med. 2002;47:234–40. Shivachandra SB, Viswas KN, Kumar AA. A review of hemorrhagic septicemia in cattle and buffalo. Anim Health Res Rev. 2011;12:67–82. Verma R, Jaiswal TN. Haemorrhagic septicaemia vaccines. Vaccine. 1998;16:1184–92. Chevalier G, Duclohier H, Thomas D, Shechter E, Wróblewski H. Purification and characterization of protein H, the major porin of Pasteurella multocida. J Bacteriol. 1993;175:266–76. Sthitmatee N, Kataoka Y, Sawada T. Inhibition of capsular protein synthesis of Pasteurella multocida strain P-1059. J Vet Med Sci. 2011;73:1445–51. Sthitmatee N, Yano T, Lampang KN, Suphavilai C, Kataoka Y, Sawada T. A 39-kDa capsular protein is a major cross-protection factor as demonstrated by protection of chickens with a live attenuated Pasteurella multocida strain of P-1059. J Vet Med Sci. 2013;75:923–8. Luo Y, Glisson JR, Jackwood MW, Hancock RE, Bains M, Cheng IH, et al. Cloning and characterization of the major outer membrane protein gene (ompH) of Pasteurella multocida X-73. J Bacteriol. 1997;179:7856–64. Sthitmatee N, Numee S, Kawamoto E, Sasaki H, Yamashita K, Takahashi N, et al. Protection of chickens from fowl cholera by vaccination with recombinant adhesive protein of Pasteurella multocida. Vaccine. 2008;26:2398–407. Thanasarasakulpong A, Poolperm P, Tankaew P, Sawada T, Sthitmatee N. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A:1 in chickens. J Vet Med Sci. 2015;77:321–6. Varinrak T, Poolperm P, Sawada T, Sthitmatee N. Cross-protection conferred by immunization with an rOmpH-based intranasal fowl cholera vaccine. Avian Pathol. 2017;46:515–25. Poolperm P, Apinda N, Kataoka Y, Suriyasathaporn W, Tragoolpua K, Sawada T, et al. Protection against Pasteurella multocida conferred by an intranasal fowl cholera vaccine in Khaki Campbell ducks. Jpn J Vet Res. 2018;66:239–50. Okay S, Özcengiz E, Gürsel I, Özcengiz G. Immunogenicity and protective efficacy of the recombinant Pasteurella lipoprotein E and outer membrane protein H from Pasteurella multocida A:3 in mice. Res Vet Sci. 2012;93:1261–5. Kim YH, Cheong KY, Shin WS, Hong SY, Woo HJ, et al. Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea.J Microbiol Biotechnol 2006:1529–1536. Firdausy KM. Sequence Homology and Epitope Prediction of 37 kDa Outer Membrane Protein H(ompH) Gene of Pasteurella Multocida Type B Isolate from Nusa Tenggara Timur (NTT). Indian J Public Health. 2019;10:1708–13. Tan HY, Nagoor NH, Sekaran SD. Cloning, expression and protective capacity of 37 kDa outer membrane protein gene (ompH) of Pasteurella multocida serotype B:2. Trop Biomed. 2010;27:430–41. Prasannavadhana A, Kumar S, Thomas P, Sarangi LN, Gupta SK, Priyadarshini A, et al. Outer membrane proteome analysis of Indian strain of Pasteurella multocida serotype B:2 by MALDI-TOF/MS analysis.Sci World J 2014:617034. Tan H, Nagoor N, Sekaran S. Cloning, expression and protective capacity of 37 kDa outer membrane protein gene (ompH) of Pasteurella multocida serotype B:2. Tropical biomedicine 2010, 27:430–441. Muangthai K, Tankaew P, Varinrak T, Uthi R, Rojanasthien S, Sawada T, et al. Intranasal immunization with a recombinant outer membrane protein H based Haemorrhagic septicemia vaccine in dairy calves. J Vet Med Sci. 2018;80:68–76. Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007;20:489–510. table of contents. Diaz-San SF, Medina GN, Stenfeldt C, Arzt J, De Los ST. Foot-and-mouth disease vaccines. Vet Microbiol. 2017;206:102–12. Singh RK, Sharma GK, Mahajan S, Dhama K, Basagoudanavar SH, Hosamani M,et al. Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel). 2019;7:90. Çokçalışkan C, Tuncer GP, Türkoğlu T, Uzunlu E, Gündüzalp C, Uzun EA, et al. Effect of simultaneous administration of foot-and-mouth disease (FMD) and anthrax vaccines on antibody response to FMD in sheep. Clin Exp Vaccine Res. 2019;8:103–9. Palanisamy R, Ramanna BC, Ananda Rao K, Srinivasan VA. Combined vaccination of cattle against FMD and rabies. Microbiologica. 1992;15:45–9. Chhabra R, Sharma R, Kakker NK. Comparative immunogenecity of foot and mouth disease virus antigens in FMD-haemorrhagic septicaemia combined vaccine and FMD vaccine alone in buffalo calves. Indian J Exp Biol. 2004;42:259–64. Altaf I, Siddique M, Muhammad K, Irshad M, Khan M, Anjum A, et al. Antibody response of rabbits to combined hemorrhagic septicemia and foot & mouth disease virus vaccine. J Anim Plant Sci. 2012;22:501–4. Prasad VS, Patel SB, Patel K, Srinivas K, Thesia M. Serological response to foot and mouth disease and haemorrhagic septicaemia combined vaccine in cattle. J Agri Vet Sci. 2019;12:57–61. Vidor E. The nature and consequences of intra- and inter-vaccine interference. J Comp Pathol. 2007;1371:62–6. Castañeda J, Espinoza M, Bernal C, Jiménez J, Aguirre L. Simultaneous vaccination of cattle with foot-and-mouth disease and vesicular stomatitis live virus vaccines. Dev Biol Stand. 1976;35:429–36. Parida S. Vaccination against foot-and-mouth disease virus: strategies and effectiveness. Expert Rev Vaccines. 2009;8:347–65. Lee MJ, Jo H, Shin SH, Kim SM, Kim B, et al. Mincle and STING-stimulating adjuvants elicit robust cellular immunity and drive long-lasting memory responses in a foot-and-mouth disease vaccine. Front Immunol. 2019;10:2509. Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol. 1995;6:229–48. Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J. In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol. 1996;26:2062–6. Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2012;3:406. Barnett PV, Statham RJ, Vosloo W, Haydon DT. Foot-and-mouth disease vaccine potency testing: determination and statistical validation of a model using a serological approach. Vaccine. 2003;21:3240–8. El-Bagoury G, El-Habbaa A, Gamil M, Fawzy H. Evaluation of an inactivated combined oil vaccine prepared for foot and mouth disease virus and bovine ephemeral fever viruses. Benha Vet Med J. 2014;27:221–31. Gamal WM, Soliman EM, Elmanzalawy MA. Tracing the antibody mediated acquired immunity by foot and mouth disease and rift valley fever combined vaccine in pregnant ewes and their lambs. Vet World. 2014;7:922–8. Srinivasan VA, Reddy GS, Rao KA, Kihm U. Serological response of bovines to combined vaccine containing foot and mouth disease virus, rabies virus, Pasteurella multocida and Clostridium chauvoei antigens. Veterinarski arhiv. 2001;71:37–46. Kasem S, Fatah SA, Khodier M, Desouky A. Evaluation of the efficacy of simultaneous vaccination of cattle against rabies and foot and mouth disease viruses. Glob Vet. 2017;18:226–33. Liu Z, Behloul N, Baha S, Wei W, Shi R, Meng J. Design and immunogenicity analysis of the combined vaccine against zoonotic hepatitis E and foot-and-mouth disease. Vaccine. 2019;37:6922–30. Trotta M, Lahore J, Cardoso N, Melucci O, Catena M, Pérez-Filgueira M, Fernández F, et al. Simultaneous immunization of cattle with foot-and-mouth disease (FMD) and live anthrax vaccines do not interfere with FMD booster responses. Trials Vaccinol. 2015;4:38–42. Elham AY, Abeer EM. Simultaneous vaccination of cattle with polyvalent pneumonic pasteurollosis vaccine and bivalent fmd vaccine (O & A). SCVMJ. 2008;13:543–53. Ataei S, Burchmore R, Christopher HJ, Finucane A, Parton R, Coote JG. Identification of immunogenic proteins associated with protection against haemorrhagic septicaemia after vaccination of calves with a live-attenuated aroA derivative of Pasteurella multocida B:2. Res Vet Sci. 2009;87:207–10. Apinda N, Nambooppha B, Rittipornlertrak A, Tankaew P, Punyapornwithaya V, Nair V. S, et al. Protection against fowl cholera in ducks immunized with a combination vaccine containing live attenuated duck enteritis virus and recombinant outer membrane protein H of Pasteurella multocida. Avian Pathol. 2020;49:221–9. Kumar B, Chaturvedi V, Somrajan S, Kumar P, Sreedevi R, Kumar S, et al. Comparative immune response of purified native OmpH protein derived from Pasteurella multocida P52 and oil adjuvant vaccine against hemorrhagic septicemia in mice. Indian J Anim Sci. 2011;81:1193–6. Tankaew P, Srisawat W, Singhla T, Tragoolpua K, Kataoka Y, Sawada T, et al. Comparison of two indirect ELISA coating antigens for the detection of dairy cow antibodies against Pasteurella multocida. J Microbiol Methods. 2018;145:20–7. Hamblin C, Barnett IT, Crowther JR. A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. II Application J Immunol Methods. 1986;93:123–9. Thanasarasakulpong A, Poolperm P, Tangjitjaroen W, Varinrak T, Sawada T, Pfeiffer, et al.Comparison of the effect of two purification methods on the immunogenicity of recombinant outer membrane protein h of Pasteurella multocida serovar A:1. Vet Med Int 2016, 2016:2579345. Basagoudanavar SH, Hosamani M, Tamil Selvan RP, Sreenivasa BP, Saravanan P, Chandrasekhar Sagar BK, et al. Development of a liquid-phase blocking ELISA based on foot-and-mouth disease virus empty capsid antigen for seromonitoring vaccinated animals. Arch Virol. 2013;158(5):993–1001. Kärber G. Beitrag zur kollektiven behandlung pharmakologischer reihenversuche. archiv f experiment. Pathol u Pharmakol. 1931;162:480–3. Böyum A. Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand J Clin Lab Invest Suppl. 1968;97:31–50. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. Linear and nonlinear mixed effects models. R package version. 2007;4(57):1–89. 3(.