Immune cell counts and signaling in body fluids of cows vaccinated against Clostridium difficile
Tóm tắt
New treatment options are needed to prevent relapses following failed antibiotic therapies of Clostridium difficile infections (CDI) in humans. The concomitant therapy with an anti-C. difficile IgA containing whey protein concentrate can support the sustainable recovery of CDI patients. For 31 weeks, nine dairy cows were continuously vaccinated with several anti-C. difficile vaccines by certain routes of administration to produce anti-C. difficile IgA enriched milk. The study aimed at finding decisive differences between low responder (LR) and high responder (HR) cows (> 8.0 µg ml−1 total milk C. difficile specific IgA) concerning their immune response to vaccination on cellular and molecular biological levels. The results of total and differential cell counting (DCC) in blood and milk and the outcomes of the gene expression analysis of selected immune factors were assessed relating to the usage of two vaccine batches for injection (MucoCD-I batch A and B), marking two immunization (IM) periods, and compared to a control group (Ctr). The MucoCD-I batch A caused short-term leukopenia followed by leukocytosis in the blood of LR and HR. The total somatic cell counts in milk were not altered by the treatment. The DCC revealed that the leukocytes of the treated groups were partly impaired by the treatment. The gene expression analysis exposed cumulative and sustainable differences (p < 0.05) between LR and HR for the genes encoding for lactoferrin, CXCL8, IL1β, IL2, IL6, IL12β, IFNγ, CD4 and CD163. The regulation of the epithelial IgA cell receptor PIGR was not impaired by the IM. In contrast to the vaccination with MucoCD-I batch A, the second IM period with MucoCD-I batch B resulted in mitigation and synchronization of the treated groups’ immune responses. The inversely regulated cytokines in the blood and milk cells of the treated groups led to a variously directed, local T cell response resulting in their different production intensities of C. difficile specific IgA in milk.
Tài liệu tham khảo
Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;372(16):1539–48.
Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of Clostridium difficile infection and its potential role in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1957–66.
Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18(2):247–63.
Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination of Clostridium difficile in food and the environment: Significant sources of C. difficile community-acquired infection? J Appl Microbiol. 2017;122(3):542–53.
Martínez JL. Effect of antibiotics on bacterial populations: a multi-hierarchical selection process. F1000Research. 2017;6:51.
Biggest threats. Antibiotic/antimicrobial resistance. Atlanta: Centers for Disease Control and Prevention. US Department of Health & Human Services. 2016. https://www.cdc.gov/drugresistance/biggest_threats.html. Accessed 07 Mar 2017.
Knight D, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015;28(3):721–41.
Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case–control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008;62(2):388–96.
Lessa FC, Gould CV, McDonald LC. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis. 2012;55(Suppl 2):65–70.
Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect. 2012;18:21–7.
McFarland LV, Surawicz CM, Rubin R, Fekety R, Elmer GW, Greenberg RN. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol. 1999;20(1):43–50.
Khanna S, Shin A, Kelly CP. Management of Clostridium difficile infection in inflammatory bowel disease: expert review from the clinical practice updates committee of the AGA institute. Clin Gastroenterol Hepatol. 2017;15(2):166–74.
Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–98.
Kelly CP, Kyne L. The host immune response to Clostridium difficile. J Med Microbiol. 2011;60:1070–9.
Hussack G, Tanha J. Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives. Toxins. 2010;2(5):998–1018.
Mattila E, Anttila V, Broas M, Marttila H, Poukka P, Kuusisto K, et al. A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: efficacy and safety data of a prematurely interrupted trial. Scand J Infect Dis. 2009;40(9):702–8.
Numan SC, Veldkamp P, Kuijper EJ, van den Berg RJ, van Dissel JT. Clostridium difficile-associated diarrhoea: bovine anti-Clostridium difficile whey protein to help aid the prevention of relapses. Gut. 2007;56(6):888–9.
van Dissel JT, de Groot N, Hensgens CMH, Numan S, Kuijper EJ, Veldkamp P, van’t Wout J. Bovine antibody-enriched whey to aid in the prevention of a relapse of Clostridium difficile-associated diarrhoea: preclinical and preliminary clinical data. J Med Microbiol. 2005;54:197–205.
Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev. 2001;14(2):430–45.
van Loveren H, van Amsterdam JGC, Vandebriel RJKTG, Rümke HC, Steerenberg PS, Vos JG. Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ Health Perspect. 2001;109(8):757–64.
Schmautz C, Hillreiner M, Ballweg I, Pfaffl MW, Kliem H. Stimulated enrichment of Clostridium difficile specific IgA in mature cow’s milk. PLoS ONE. 2018;13(4):e0195275.
Paton N. Cattle vaccination: decision making in herd health planning. Practice. 2013;35(2):77–84.
Paape MJ, Shaver-Weaver K, Capuco AV, van Oostveldt K, Burvenich C. Immune surveillance of mammary tissues by phagocytic cells. In: Back N, Cohen IR, Kritchevsky D, Lajtha A, Paoletti R, editors. Advances in experimental medicine and biology. New York: Kluwer Academic Publishers; 2002. p. 256–77.
Houwen B. The differential cell count. Lab Hematol. 2001;7:89–100.
Kraft W, Dürr UM. Klinische Labordiagnostik in der Tiermedizin. 5th ed. Stuttgart: Schattauer; 1999.
Engel P, Boumsell L, Balderas R, Bensussan A, Gattei V, Horejsi V, et al. CD nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol. 2015;195(10):4555–63.
Pennington J, Garner SF, Sutherland J, Williamson LM. Residual subset population analysis in WBC-reduced blood components using real-time PCR quantitation of specific mRNA. Transfusion. 2001;41:1591–600.
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. BBA Mol Cell Res. 2014;1843(11):2563–82.
Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):1–19.
Kagnoff ME, Eckmann L. Epithelial cells as sensor for microbial infection. J Clin Invest. 1997;100(1):6–10.
Bradley A, Green M. Use and interpretation of somatic cell count data in dairy cows. Practice. 2005;27:310–5.
Fehlings K. Kranke Euter kosten Geld. Bayerisches Landwirtschaftliches Wochenblatt. 2008;44:22–4.
Nicholson GC, Tennant RC, Carpenter DC, Sarau HM, Kon OM, Barnes PJ, et al. A novel flow cytometric assay of human whole blood neutrophil and monocyte CD11b levels: upregulation by chemokines is related to receptor expression, comparison with neutrophil shape change, and effects of a chemokine receptor (CXCR2) antagonist. Pulm Pharmacol Ther. 2007;20(1):52–9.
Cardona AE, Sasse ME, Liu L, Cardona SM, Mizutani M, Savarin C, et al. Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood. 2008;112(2):256–63.
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.
Takata H, Tomiyama H, Fujiwara M, Kobayashi N, Takiguchi M. Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J Immunol. 2004;173:2231–5.
Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223–46.
Spellberg B, Edwards JE. Type 1/type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32:76–102.
Liu H, Rhodes M, Wiest DL, Vignali DAA. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity. 2000;13:665–75.
Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine. 2004;28(3):109–23.
Trinchieri G. Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998;16:365–96.
Estes DM, Brown WC. Type 1 and type 2 responses in regulation of Ig isotype expression in cattle. Vet Immunol Immunopathol. 2002;90:1–10.
Estes DM. Regulation of IgA responses in cattle, humans and mice. Vet Immunol Immunopathol. 2010;138(4):312–7.
Kaetzel C. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev. 2005;206:83–99.
Johansen F, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol. 2004;25(3):150–7.
Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194(8):3542–8.
Ezzat Alnakip M, Quintela-Baluja M, Böhme K, Fernández-No I, Caamaño-Antelo S, Calo-Mata P, et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med. 2014;2014(1):1–31.
Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90(3):233–44.
Distelhorst K, Voyich J, Wilson E. Partial characterization and distribution of the chemokines CCL25 and CCL28 in the bovine system. Vet Immunol Immunopathol. 2010;138(1–2):134–8.
Tuaillon E, Valea D, Becquart P, Al Tabaa Y, Meda N, Bollore K, et al. Human milk-derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol. 2009;182(11):7155–62.
Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? BioEssays. 2006;28(6):606–16.
Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298:2199–202.
Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.
Richeson JT, Kegley EB, Gadberry MS, Beck PA, Powell JG, Jones CA. Effects of on-arrival versus delayed clostridial or modified live respiratory vaccinations on health, performance, bovine viral diarrhea virus type I titers, and stress and immune measures of newly received beef calves. J Anim Sci. 2009;87(7):2409–18.
Anderson BH, Watson DL, Colditz I. The effect of dexamethasone on some immunological parameters in cattle. Vet Res Commun. 1999;23:399–413.
Slifka MK, Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol. 1998;10:525–8.
Schutyser E, Struyf S, van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003;14(5):409–26.
Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert-Grani C, et al. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res. 2013;44(1):40.
Rainard P, Riollet C, Berthon P, Cunha P, Fromageau A, Rossignol C, et al. The chemokine CXCL3 is responsible for the constitutive chemotactic activity of bovine milk for neutrophils. Mol Immunol. 2008;45(15):4020–7.
Riollet C, Rainard P, Poutrel B. Cells and cytokines in inflammatory secretions of bovine mammary gland. In: Back N, Cohen IR, Kritchevsky D, Lajtha A, Paoletti R, editors. Advances in experimental medicine and biology. New York: Kluwer Academic Publishers; 2002. p. 247–58.
Bannerman DD. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci. 2009;87(Suppl 1):10–25.
Middleton J, Luby C, Adams D. Efficacy of vaccination against staphylococcal mastitis: a review and new data. Vet Microbiol. 2009;134(1–2):192–8.
Wellnitz O, Zbinden C, Huang X, Bruckmaier RM. Short communication: differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid. J Dairy Sci. 2016;99(6):4851–6.
Schröder AC, Hamann J. The influence of technical factors on differential cell count in milk. J Dairy Res. 1999;72(2):153–8.
Dosogne H, Vangroenweghe F, Mehrzad J, Massart-Leën AM, Burvenich C. Differential leukocyte count method for bovine low somatic cell count milk. J Dairy Sci. 2003;86(3):828–34.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.