Immune Components of Colostrum and Milk—A Historical Perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kitasato S. Das Verhalten der Cholerabacterien in der Milch. Z Hyg Infektionskrankh 1889;5:491–6.
Fokker AP. Ueber bacterienvernichtende Eigenschaften der Milch. Z Hyg Infektionskrankh 1890;9:41–55.
Ehrlich P. Ueber Immunität durch Vererbung und Säugung. Z Hyg Infektionskr 1892;12:183–203.
Isaacs CE. The antimicrobial function of milk lipids. Adv Nutr Res 2001;10:271–85.
Ehrlich P, Brieger L. Beiträge zur Kenntnis der Milch immunisirter Thiere. Z Hyg Infektionskr 1893;13:336–46.
Campbell B, Petersen WE. Immune milk—a historical survey. Dairy Sci Abst 1963;25(9):345–58.
Famulener LW. On the transmission of immunity from mother to offspring. J Infect Disease 1912;10:332–40.
Orcutt ML, Howe PE. The relation between the accumulation of globulins and the appearance of agglutinins in the blood of new-born calves. J Exp Med 1922;36:291–308.
Little RB, Orcutt ML. The transmission of agglutinins of Bacillus abortus from cow to calf in the colostrum. J Exp Med 1922;35:161–71.
Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: I. Critique of placental permeability. J Immunol 1927;14:249–65.
Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: II. The role of colostrum. J Immunol 1927;14:267–74.
Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: III. The rôle of milk. J Immunol 1927;14:275–90.
Smith T. The immunological significance of colostrum. I. The relationship between colostrum, serum, and the milk of cows normal and immunized towards B. coli. J Exp Med 1930;51:473–81.
Ingram PL, Lovell R, Wood PC, Aschaffenburg R, Bartlett S, Kon SK, et al. Bacterium coli antibodies in colostrum and their relation to calf survival. J Pathol Bacteriol 1956;72:561–8.
Lascelles AK. A review of the literature on some aspects of immune milk. Dairy Sci Abstr 1963;25(9):359–64.
Richards CB, Marrack JR. Sheep serum gamma globulin. In: Peeters H, editor. Protides of the biological fluids bruges. Amsterdam: Elsevier Science; 1963. p. 154–156.
Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy Appl Immunol 1961;18:241–67.
Campbell B, Porter RM, Petersen WE. Plasmacytosis of the bovine udder during colostrum secretion and experimental cessation of milking. Nature 1950;166(4230):913.
Lee CS, Lascelles AK. Antibody-producing cells in antigenically stimulated mammary glands and in the gastro-intestinal tract of sheep. Aust J Exp Biol Med Sci 1970;48(5):525–35.
Blakemore F, Garner RJ. The maternal transference of antibodies in the bovine. J Comp Pathol 1956;66(4):287–9.
Butler JE. Characteristics of bovine immunoglobulins and related molecules. Review of the bovine immunoglobulins. J Dairy Sci 1971;54(9):1315–6.
Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 1972;51(11):2916–27.
Kemler R, Mossmann H, Strohmaier U, Kickhofen B, Hammer DK. In vitro studies on the selective binding of IgG from different species to tissue sections of the bovine mammary gland. Eur J Immunol 1975;5(9):603–8.
Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB, et al. Regulation of the immunoglobulin G1 receptor: effect of prolactin on in vivo expression of the bovine mammary immunoglobulin G1 receptor. J Endocrinol 1999;163(1):25–31.
Smith KL, Muir LA, Ferguson LC, Conrad HR. Selective transport of IgGl into the mammary gland: role of estrogen and progesterone. J Dairy Sci 1971;54(12):1886–94.
Lascelles AK, McDowell GH. Localized humoral immunity with particular reference to ruminants. Transplant Rev 1974;19(0):170–208.
Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB. Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J Dairy Sci 1997;80(1):94–100.
Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med 1977;146(5):1311–22.
Weisz-Carrington P, Roux ME, Lamm ME. Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol 1977;119(4):1306–7.
McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 1979;122(5):1892–8.
Tanneau GM, Oyant LHS, Chevaleyre CC, Salmon HP. Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem 1999;47(12):1581–92.
Finke D, Acha-Orbea H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur J Immunol 2001;31(9):2603–11.
Hodgkinson AJ, Carpenter EA, Smith CS, Molan PC, Prosser CG. Adhesion molecule expression in the bovine mammary gland. Vet Immunol Immunopathol 2007;115(3–4):205–15.
Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004;200(6):805–9.
Crago SS, Kulhavy R, Prince SJ, Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med 1978;147(6):1832–7.
Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 1994;125(1):67–86.
de Groot N, Van Kuik-Romeijn P, Lee SH, De Boer HA. Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology 2000;101(2):218–24.
Rosato R, Jammes H, Belair L, Puissant C, Kraehenbuhl JP, Djiane J. Polymeric-Ig receptor gene expression in rabbit mammary gland during pregnancy and lactation: evolution and hormonal regulation. Mol Cell Endocrinol 1995;110(1–2):81–7.
Rincheval-Arnold A, Belair L, Djiane J. Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J Dairy Res 2002;69(1):13–26.
Brown WR, Newcomb RW, Ishizaka K. Proteolytic degradation of exocrine and serum immunoglobulins. J Clin Invest 1970;49(7):1374–80.
Shuster J. Pepsin hydrolysis of IgA-delineation of two populations of molecules. Immunochemistry 1971;8(5):405–11.
Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002;17(1):107–15.
Groves ML, Gordon WG. Isolation of a new glycoprotein-a and a gamma-G-globulin from individual cow milks. Biochemistry 1967;6(8):2388–94.
de Oliveira IR, de Araujo AN, Bao SN, Giugliano LG. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2001;203(1):29–33.
Marshall LJ, Perks B, Ferkol T, Shute JK. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol 2001;167(5):2816–23.
Holm GC. The types of leucocytes in market milk as related to bovine mastitis. J Am Vet Med Assoc 1934;35:735–46.
Nakajima S, Baba AS, Tamura N. Complement system in human colostrum: presence of nine complement components and factors of alternative pathway in human colostrum. Int Arch Allergy Appl Immunol 1977;54(5):428–33.
Reiter B, Brock JH. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain of E. coli of the serotype O 111. Immunology 1975;28(1):71–82.
Smith CW, Goldman AS. The cells of human colostrum .I. In vitro studies of morphology and functions. Pediatr Res 1968;2(2):103–9.
Mohr JA. The possible induction and-or acquisition of cellular hypersensitivity associated with ingestion of colostrum. J Pediatr 1973;82(6):1062–4.
Beer AE, Billington RE, Head JR. Natural transplantation of leukocytes during suckling. Transplant Proc 1975;7:399–402.
Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983;4(2):95–8.
Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci 1985;39(1):10–5.
Miller SC. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse. J Reprod Immunol 1981;3(3):187–94.
Keller MA, Kidd RM, Bryson YJ, Turner JL, Carter J. Lymphokine production by human milk lymphocytes. Infect Immun 1981;32(2):632–6.
Lawton JW, Shortridge KF, Wong RL, Ng MH. Interferon synthesis by human colostral leucocytes. Arch Dis Child 1979;54(2):127–30.
Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol 2000;78(1):74–9.
Penttilla IA. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats. Pediatr Res 2006;59:650–5.
Stavnezer J. Regulation of antibody production and class switching by TGF-beta. J Immunol 1995;155(4):1647–51.
Sordillo LM, Shafer-Weaver K, DeRosa D. Immunobiology of the mammary gland. J Dairy Sci 1997;80(8):1851–65.
Gauthier SF, Pouliot Y, Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 2006;16:1315–1323.
Silanikove N, Shapiro F, Shamay A, Leitner G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med 2005;38(9):1139–51.
Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42(3):292–6.
Yu WH. Scientific rationale and benefits of nucleotide supplementation of infant formula. J Paediatr Child Health 2002;38:543–9.
Horrobin E. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of ecosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EPA) metabolism or a combination of both? Med Hypothesis 1987;22:388–96.
Pastor N, Soler B, Mitmesser SH, Ferguson P, Lifschitz C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin Pediatr (Phila) 2006;45(9):850–5.
Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, et al. Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin Exp Allergy 2003;33(4):442–8.
Grulee CG, Sanford HN, Herron PH. Breast and artificial feeding: influences on morbidity and mortality of twenty thousand infants. J Am Med Assoc 1934;103:735–9.
Jarvinen KM, Suomalainen H. Leucocytes in human milk and lymphocyte subsets in cow’s milk-allergic infants. Pediatr Allergy Immunol 2002;13(4):243–54.
Ruiz RG, Kemeny DM, Price JF. Higher risk of infantile atopic dermatitis from maternal atopy than from paternal atopy. Clin Exp Allergy 1992;22(8):762–6.
Han Y-S, Park H-Y, Ahn K-M, Lee J-S, Choi H-M, Lee S-I. Short-term effect of partially hydrolysed formula on the prevention of development of atopic dermatitis in infants at high risk. J Korean Med Sci 2003;18:547–51.
Saarinen KM, Savilahti E. Infant feeding patterns affect the subsequent immunological features in cow’s milk allergy. Clin Exp Allergy 2000;30(3):400–6.
Gdalevich M, Mimouni D, David M, Mimouni M. Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 2001;45(4):520–7.
Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy Soc Ser Biol Sci 1922;93:306–17.
Bordet J, Bordet M. Le pouvoir bacteriolytique du colostrum et du lait. Compt Rend 1924;179:1109–13.
Salton MR. The properties of lysozyme and its action on microorganisms. Bacteriol Rev 1957;21(2):82–100.
Auclair JE. Studies on the antibacterial properties of cow’s milk. PhD Thesis, University of Reading 1953.
Wright RC, Tramer J. Factors influencing the activity of cheese starters. The role of milk peroxidase. J Dairy Res 1958;25:104–18.
Theorell H, Akeson A. Highly purified milk peroxidase. Ark Kemi Mineral Geol 1943;B17(7):1–6.
Jago GR, Morrison M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med 1962;111:585–8.
Sorensen M, Sorensen SPL. The proteins in whey. C R Trav Lab Carlsberg 1939;23:55–99.
Schäfer KH. Elektrophoretische Untersuchengen zum Milchweissproblem. Monatsschr Kinderheilkd 1951;99:69.
Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968;170(2):351–65.
Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 1971;124(6):539–44.
Schardinger F. Ueber das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung sur Unterscheidung von ungekochter und gekochter Milch. Z Unters Nahr Genussm 1902;5:1113–21.
Green DE, Pauli R. The antibacterial action of the xanthine oxidase system. Proc Soc Exp Biol Med 1943;54:148–50.
Lipmann F, Owen CR. The antibacterial effect of enzymatic xanthine oxidation. Science 1943;98:246–8.
Gyorgy P, Dhanamitta S, Steers E. Protective effects of human milk in experimental staphylococcus infection. Science 1962;137:338–40.
Masson PL, Heremans JF, Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966;14:735–739.
Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130(3):643–58.
Harmon RJ, Schanbacher FL, Ferguson LC, Smith KL. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Am J Vet Res 1975;36(7):1001–7.
Masson PL, Heremans JF. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem 1968;6(4):579–84.
Goldsmith SJ, Eitenmiller RR, Barnhart HM, Toledo RT, Rao VN. Unsaturated iron-binding capacity of human milk. J Food Sci 1982;47:1298–304.
Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 1980;28(3):893–8.
Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991;74(12):4137–42.
van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res 2001;52(3):225–39.
Reiter B. The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp 1978;65:285–94.
de Wit JN, Hooydonk ACM. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth Milk Dairy J 1996;50:227–44.
Kussendrager KD, van Hooijdonk AC. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr. 2000;84(Suppl 1):S19–S25.
Bjorck L, Rosen C, Marshall V, Reiter B. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Appl Microbiol 1975;30(2):199–204.
Reiter B, Marshall VM, Bjorck L, Rosen CG. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens. Infect Immun 1976;13(3):800–7.
Bjorck L, Claesson O. Xanthine oxidase as a source of hydrogen peroxide for the lactoperoxidase system in milk. J Dairy Sci 1979;62:1211–5.
Hunt J, Massey V. Purification and properties of milk xanthine dehydrogenase. J Biol Chem 1992;267(30):21479–85.
Tubaro E, Lotti B, Santiangeli C, Cavallo G. Xanthine oxidase increase in polymorphonuclear leucocytes and macrophages in mice in three pathological situations. Biochem Pharmacol 1980;29(3):1945–8.
Bungener W. Influence of allopurinol on the multiplication of rodent malaria parasites. Tropenmed Parasitol 1974;25(3):309–12.
Cohn ZA, Hirsch JG. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 1960;112:983–1004.
Leffell MS, Spitznagel JK. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun 1972;6(5):761–5.
Lahov E, Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 1996;34(1):131–45.
Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9(1):4–9.
Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75(1):39–48.
Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 2004;11(1):174–85.
Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, et al. Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 2004;72(12):7311–4.
Armogida SA, Yannaras NM, Melton AL, Srivastava MD. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc 2004;25(5):297–304.
Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL. Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 2005;57(1):10–5.
McDonald TL, Larson MA, Mack DR, Weber A. Elevated extrahepatic expression and secretion of mammary-associated serum amyloid A 3 (M-SAA3) into colostrum. Vet Immunol Immunopathol 2001;83(3–4):203–11.
Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A. The complete amino acid sequence of bovine milk angiogenin. FEBS Lett 1988;241(1–2):41–5.
Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73.
Egesten A, Dyer KD, Batten D, Domachowske JB, Rosenberg HF. Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim Biophys Acta 1997;1358(3):255–60.
Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 2001;70(5):691–8.
Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, et al. Construction and validation of a bovine innate immune microarray. BMC Genomics 2005;6:135.
Swanson KM, Henderson HV, Farr VC, Davis SR, Oden K, Stelwagen K, et al. The use of microarrays to investigate gene regulation in the bovine mammary gland during Streptococcus uberis mastitis. Proc NZ Soc Anim Prod 2004;64:14–6.
Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.
Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6(2):R92–R109.
Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004;4(7):2094–100.
Smolenski G, Haines S, Kwan FY, Bond J, Farr V, Davis SR, et al. Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 2007;6(1):207–15.
Takakura N, Wakabayashi H, Yamauchi K, Takase M. Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 2006;84(3):363–8.
Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27–66.
Hodgkinson AJ, Cannon RD, Holmes AR, Fischer FJ, Willix-Payne DJ. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J Dairy Res 2007;74(3):269–75.
Finlay BB, Hancock RE. Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2004;2(6):497–504.
Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 2002;8(6):403–17.
Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 2001;19(1):66–70.