Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes

Trends in Molecular Medicine - Tập 24 - Trang 931-941 - 2018
Ciriana Orabona1, Giada Mondanelli1, Paolo Puccetti1, Ursula Grohmann1
1University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy

Tài liệu tham khảo

Theofilopoulos, 2017, The multiple pathways to autoimmunity, Nat. Immunol., 18, 716, 10.1038/ni.3731 Diabetes, 1993, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med., 329, 977, 10.1056/NEJM199309303291401 Keymeulen, 2005, Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes, N. Engl. J. Med., 352, 2598, 10.1056/NEJMoa043980 Herold, 2002, Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus, N. Engl. J. Med., 346, 1692, 10.1056/NEJMoa012864 Pescovitz, 2009, Rituximab, B-lymphocyte depletion, and preservation of beta-cell function, N. Engl. J. Med., 361, 2143, 10.1056/NEJMoa0904452 Kolb, 2017, Immunotherapy for type 1 diabetes: why do current protocols not halt the underlying disease process?, Cell Metab., 25, 233, 10.1016/j.cmet.2016.10.009 Chatenoud, 2015, World Diabetes Day: perspectives on immunotherapy of type 1 diabetes, Eur. J. Immunol., 45, 2968, 10.1002/eji.201570114 Skyler, 2014, Characterizing subgroups of type 1 diabetes, Diabetes, 63, 3578, 10.2337/db14-1160 Tuomi, 2014, The many faces of diabetes: a disease with increasing heterogeneity, Lancet, 383, 1084, 10.1016/S0140-6736(13)62219-9 Arif, 2014, Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes, Diabetes, 63, 3835, 10.2337/db14-0365 Chan, 2013, Personalizing medicine for autoimmune and inflammatory diseases, Nat. Immunol., 14, 106, 10.1038/ni.2473 Insel, 2015, Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association, Diabetes Care, 38, 1964, 10.2337/dc15-1419 Sosenko, 2008, Glucose and C-peptide changes in the perionset period of type 1 diabetes in the Diabetes Prevention Trial-Type 1, Diabetes Care, 31, 2188, 10.2337/dc08-0935 Greenbaum, 2012, Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data, Diabetes, 61, 2066, 10.2337/db11-1538 Pozzilli, 2015, Combination immunotherapies for type 1 diabetes mellitus, Nat. Rev. Endocrinol., 11, 289, 10.1038/nrendo.2015.8 Woittiez, 2015, Impact of disease heterogeneity on treatment efficacy of immunotherapy in type 1 diabetes: different shades of gray, Immunotherapy, 7, 163, 10.2217/imt.14.104 Odegard, 2015, Biomarkers for antigen immunotherapy in allergy and type 1 diabetes, Clin. Immunol., 161, 44, 10.1016/j.clim.2015.05.023 Orban, 2014, Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline, Diabetes, 63, 3449, 10.2337/db14-0047 Walunas, 1994, CTLA-4 can function as a negative regulator of T cell activation, Immunity, 1, 405, 10.1016/1074-7613(94)90071-X Leach, 1996, Enhancement of antitumor immunity by CTLA-4 blockade, Science, 271, 1734, 10.1126/science.271.5256.1734 Baumeister, 2016, Coinhibitory pathways in immunotherapy for cancer, Annu. Rev. Immunol., 34, 539, 10.1146/annurev-immunol-032414-112049 Pardoll, 2012, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12, 252, 10.1038/nrc3239 Sharma, 2015, The future of immune checkpoint therapy, Science, 348, 56, 10.1126/science.aaa8172 Larkin, 2015, Combined nivolumab and ipilimumab or monotherapy in untreated melanoma, N. Engl. J. Med., 373, 1270, 10.1056/NEJMoa1504030 Garon, 2015, Pembrolizumab for the treatment of non-small-cell lung cancer, N. Engl. J. Med., 372, 2018, 10.1056/NEJMoa1501824 Topalian, 2014, Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab, J. Clin. Oncol., 32, 1020, 10.1200/JCO.2013.53.0105 Hamid, 2013, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma, N. Engl. J. Med., 369, 134, 10.1056/NEJMoa1305133 Naidoo, 2016, What does the future hold for immunotherapy in cancer?, Ann. Transl. Med., 4, 177, 10.21037/atm.2016.04.05 Sharma, 2015, Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, 161, 205, 10.1016/j.cell.2015.03.030 Donini, 2018, Next generation immune-checkpoints for cancer therapy, J. Thorac. Dis., 10, S1581, 10.21037/jtd.2018.02.79 Goldberg, 2011, LAG-3 in cancer immunotherapy, Curr. Top. Microbiol. Immunol., 344, 269 Kuchroo, 2003, The TIM gene family: emerging roles in immunity and disease, Nat. Rev. Immunol., 3, 454, 10.1038/nri1111 Grohmann, 2003, Tolerance, DCs and tryptophan: much ado about IDO, Trends Immunol., 24, 242, 10.1016/S1471-4906(03)00072-3 Mellor, 2004, IDO expression by dendritic cells: tolerance and tryptophan catabolism, Nat. Rev. Immunol., 4, 762, 10.1038/nri1457 Puccetti, 2007, IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation, Nat. Rev. Immunol., 7, 817, 10.1038/nri2163 Platten, 2012, Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion, Cancer Res., 72, 5435, 10.1158/0008-5472.CAN-12-0569 Grohmann, 2002, CTLA-4–Ig regulates tryptophan catabolism in vivo, Nat. Immunol., 3, 1097, 10.1038/ni846 Fallarino, 2003, Modulation of tryptophan catabolism by regulatory T cells, Nat. Immunol., 4, 1206, 10.1038/ni1003 Li, 2016, Tolerogenic phenotype of IFN-gamma-induced IDO+ dendritic cells is maintained via an autocrine IDO–kynurenine/AhR–IDO loop, J. Immunol., 197, 962, 10.4049/jimmunol.1502615 Nguyen, 2014, Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research, Front. Immunol., 5, 551, 10.3389/fimmu.2014.00551 Mezrich, 2010, An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells, J. Immunol., 185, 3190, 10.4049/jimmunol.0903670 Fallarino, 2012, Indoleamine 2,3-dioxygenase: from catalyst to signaling function, Eur. J. Immunol., 42, 1932, 10.1002/eji.201242572 Quintana, 2013, Aryl hydrocarbon receptor control of adaptive immunity, Pharmacol. Rev., 65, 1148, 10.1124/pr.113.007823 Orabona, 2004, CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86, Nat. Immunol., 5, 1134, 10.1038/ni1124 Orabona, 2005, Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28–Ig from immune adjuvant to suppressant, J. Immunol., 174, 6582, 10.4049/jimmunol.174.11.6582 Orabona, 2008, SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis, Proc. Natl. Acad. Sci. U. S. A., 105, 20828, 10.1073/pnas.0810278105 Orabona, 2012, Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase, Mol. Med., 18, 834, 10.2119/molmed.2012.00029 Grohmann, 2007, Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy, Nat. Med., 13, 579, 10.1038/nm1563 Fu, 2011, The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy, Cancer Res., 71, 5445, 10.1158/0008-5472.CAN-11-1138 Hamid, 2011, A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma, J. Transl. Med., 9, 204, 10.1186/1479-5876-9-204 Zhang, 2011, Involvement of indoleamine 2,3-dioxygenase in impairing tumor-infiltrating CD8 T-cell functions in esophageal squamous cell carcinoma, Clin. Dev. Immunol., 2011, 10.1155/2011/384726 Topalian, 2015, Immune checkpoint blockade: a common denominator approach to cancer therapy, Cancer Cell, 27, 450, 10.1016/j.ccell.2015.03.001 Caspi, 2008, Immunotherapy of autoimmunity and cancer: the penalty for success, Nat. Rev. Immunol., 8, 970, 10.1038/nri2438 Byun, 2017, Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies, Nat. Rev. Endocrinol., 13, 195, 10.1038/nrendo.2016.205 Weber, 2015, Toxicities of immunotherapy for the practitioner, J. Clin. Oncol., 33, 2092, 10.1200/JCO.2014.60.0379 Kong, 2014, Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1, Front. Immunol., 5, 206, 10.3389/fimmu.2014.00206 Stamatouli, 2018, Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors, Diabetes, 67, 1471, 10.2337/dbi18-0002 Fife, 2008, Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways, Immunol. Rev., 224, 166, 10.1111/j.1600-065X.2008.00662.x Buchbinder, 2016, CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition, Am. J. Clin. Oncol., 39, 98, 10.1097/COC.0000000000000239 Orban, 2011, Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial, Lancet, 378, 412, 10.1016/S0140-6736(11)60886-6 Ben Nasr, 2017, PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes, Sci. Transl. Med., 9, 10.1126/scitranslmed.aam7543 Ansari, 2003, The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice, J. Exp. Med., 198, 63, 10.1084/jem.20022125 Grohmann, 2003, A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice, J. Exp. Med., 198, 153, 10.1084/jem.20030633 Fallarino, 2009, IDO mediates TLR9-driven protection from experimental autoimmune diabetes, J. Immunol., 183, 6303, 10.4049/jimmunol.0901577 Fallarino, 2009, Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone, J. Exp. Med., 206, 2511, 10.1084/jem.20090134 Pallotta, 2014, Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes, J. Cell. Mol. Med., 18, 2082, 10.1111/jcmm.12360 Mondanelli, 2017, The proteasome inhibitor bortezomib controls indoleamine 2,3-dioxygenase 1 breakdown and restores immune regulation in autoimmune diabetes, Front. Immunol., 8, 428, 10.3389/fimmu.2017.00428 Orabona, 2018, Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes, JCI Insight, 3, 10.1172/jci.insight.96244 Anquetil, 2018, Loss of IDO1 expression from human pancreatic beta-cells precedes their destruction during the development of type 1 diabetes, Diabetes, 67, 1858, 10.2337/db17-1281