Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes
Tài liệu tham khảo
Theofilopoulos, 2017, The multiple pathways to autoimmunity, Nat. Immunol., 18, 716, 10.1038/ni.3731
Diabetes, 1993, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med., 329, 977, 10.1056/NEJM199309303291401
Keymeulen, 2005, Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes, N. Engl. J. Med., 352, 2598, 10.1056/NEJMoa043980
Herold, 2002, Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus, N. Engl. J. Med., 346, 1692, 10.1056/NEJMoa012864
Pescovitz, 2009, Rituximab, B-lymphocyte depletion, and preservation of beta-cell function, N. Engl. J. Med., 361, 2143, 10.1056/NEJMoa0904452
Kolb, 2017, Immunotherapy for type 1 diabetes: why do current protocols not halt the underlying disease process?, Cell Metab., 25, 233, 10.1016/j.cmet.2016.10.009
Chatenoud, 2015, World Diabetes Day: perspectives on immunotherapy of type 1 diabetes, Eur. J. Immunol., 45, 2968, 10.1002/eji.201570114
Skyler, 2014, Characterizing subgroups of type 1 diabetes, Diabetes, 63, 3578, 10.2337/db14-1160
Tuomi, 2014, The many faces of diabetes: a disease with increasing heterogeneity, Lancet, 383, 1084, 10.1016/S0140-6736(13)62219-9
Arif, 2014, Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes, Diabetes, 63, 3835, 10.2337/db14-0365
Chan, 2013, Personalizing medicine for autoimmune and inflammatory diseases, Nat. Immunol., 14, 106, 10.1038/ni.2473
Insel, 2015, Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association, Diabetes Care, 38, 1964, 10.2337/dc15-1419
Sosenko, 2008, Glucose and C-peptide changes in the perionset period of type 1 diabetes in the Diabetes Prevention Trial-Type 1, Diabetes Care, 31, 2188, 10.2337/dc08-0935
Greenbaum, 2012, Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data, Diabetes, 61, 2066, 10.2337/db11-1538
Pozzilli, 2015, Combination immunotherapies for type 1 diabetes mellitus, Nat. Rev. Endocrinol., 11, 289, 10.1038/nrendo.2015.8
Woittiez, 2015, Impact of disease heterogeneity on treatment efficacy of immunotherapy in type 1 diabetes: different shades of gray, Immunotherapy, 7, 163, 10.2217/imt.14.104
Odegard, 2015, Biomarkers for antigen immunotherapy in allergy and type 1 diabetes, Clin. Immunol., 161, 44, 10.1016/j.clim.2015.05.023
Orban, 2014, Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline, Diabetes, 63, 3449, 10.2337/db14-0047
Walunas, 1994, CTLA-4 can function as a negative regulator of T cell activation, Immunity, 1, 405, 10.1016/1074-7613(94)90071-X
Leach, 1996, Enhancement of antitumor immunity by CTLA-4 blockade, Science, 271, 1734, 10.1126/science.271.5256.1734
Baumeister, 2016, Coinhibitory pathways in immunotherapy for cancer, Annu. Rev. Immunol., 34, 539, 10.1146/annurev-immunol-032414-112049
Pardoll, 2012, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12, 252, 10.1038/nrc3239
Sharma, 2015, The future of immune checkpoint therapy, Science, 348, 56, 10.1126/science.aaa8172
Larkin, 2015, Combined nivolumab and ipilimumab or monotherapy in untreated melanoma, N. Engl. J. Med., 373, 1270, 10.1056/NEJMoa1504030
Garon, 2015, Pembrolizumab for the treatment of non-small-cell lung cancer, N. Engl. J. Med., 372, 2018, 10.1056/NEJMoa1501824
Topalian, 2014, Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab, J. Clin. Oncol., 32, 1020, 10.1200/JCO.2013.53.0105
Hamid, 2013, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma, N. Engl. J. Med., 369, 134, 10.1056/NEJMoa1305133
Naidoo, 2016, What does the future hold for immunotherapy in cancer?, Ann. Transl. Med., 4, 177, 10.21037/atm.2016.04.05
Sharma, 2015, Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, 161, 205, 10.1016/j.cell.2015.03.030
Donini, 2018, Next generation immune-checkpoints for cancer therapy, J. Thorac. Dis., 10, S1581, 10.21037/jtd.2018.02.79
Goldberg, 2011, LAG-3 in cancer immunotherapy, Curr. Top. Microbiol. Immunol., 344, 269
Kuchroo, 2003, The TIM gene family: emerging roles in immunity and disease, Nat. Rev. Immunol., 3, 454, 10.1038/nri1111
Grohmann, 2003, Tolerance, DCs and tryptophan: much ado about IDO, Trends Immunol., 24, 242, 10.1016/S1471-4906(03)00072-3
Mellor, 2004, IDO expression by dendritic cells: tolerance and tryptophan catabolism, Nat. Rev. Immunol., 4, 762, 10.1038/nri1457
Puccetti, 2007, IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation, Nat. Rev. Immunol., 7, 817, 10.1038/nri2163
Platten, 2012, Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion, Cancer Res., 72, 5435, 10.1158/0008-5472.CAN-12-0569
Grohmann, 2002, CTLA-4–Ig regulates tryptophan catabolism in vivo, Nat. Immunol., 3, 1097, 10.1038/ni846
Fallarino, 2003, Modulation of tryptophan catabolism by regulatory T cells, Nat. Immunol., 4, 1206, 10.1038/ni1003
Li, 2016, Tolerogenic phenotype of IFN-gamma-induced IDO+ dendritic cells is maintained via an autocrine IDO–kynurenine/AhR–IDO loop, J. Immunol., 197, 962, 10.4049/jimmunol.1502615
Nguyen, 2014, Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research, Front. Immunol., 5, 551, 10.3389/fimmu.2014.00551
Mezrich, 2010, An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells, J. Immunol., 185, 3190, 10.4049/jimmunol.0903670
Fallarino, 2012, Indoleamine 2,3-dioxygenase: from catalyst to signaling function, Eur. J. Immunol., 42, 1932, 10.1002/eji.201242572
Quintana, 2013, Aryl hydrocarbon receptor control of adaptive immunity, Pharmacol. Rev., 65, 1148, 10.1124/pr.113.007823
Orabona, 2004, CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86, Nat. Immunol., 5, 1134, 10.1038/ni1124
Orabona, 2005, Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28–Ig from immune adjuvant to suppressant, J. Immunol., 174, 6582, 10.4049/jimmunol.174.11.6582
Orabona, 2008, SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis, Proc. Natl. Acad. Sci. U. S. A., 105, 20828, 10.1073/pnas.0810278105
Orabona, 2012, Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase, Mol. Med., 18, 834, 10.2119/molmed.2012.00029
Grohmann, 2007, Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy, Nat. Med., 13, 579, 10.1038/nm1563
Fu, 2011, The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy, Cancer Res., 71, 5445, 10.1158/0008-5472.CAN-11-1138
Hamid, 2011, A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma, J. Transl. Med., 9, 204, 10.1186/1479-5876-9-204
Zhang, 2011, Involvement of indoleamine 2,3-dioxygenase in impairing tumor-infiltrating CD8 T-cell functions in esophageal squamous cell carcinoma, Clin. Dev. Immunol., 2011, 10.1155/2011/384726
Topalian, 2015, Immune checkpoint blockade: a common denominator approach to cancer therapy, Cancer Cell, 27, 450, 10.1016/j.ccell.2015.03.001
Caspi, 2008, Immunotherapy of autoimmunity and cancer: the penalty for success, Nat. Rev. Immunol., 8, 970, 10.1038/nri2438
Byun, 2017, Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies, Nat. Rev. Endocrinol., 13, 195, 10.1038/nrendo.2016.205
Weber, 2015, Toxicities of immunotherapy for the practitioner, J. Clin. Oncol., 33, 2092, 10.1200/JCO.2014.60.0379
Kong, 2014, Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1, Front. Immunol., 5, 206, 10.3389/fimmu.2014.00206
Stamatouli, 2018, Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors, Diabetes, 67, 1471, 10.2337/dbi18-0002
Fife, 2008, Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways, Immunol. Rev., 224, 166, 10.1111/j.1600-065X.2008.00662.x
Buchbinder, 2016, CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition, Am. J. Clin. Oncol., 39, 98, 10.1097/COC.0000000000000239
Orban, 2011, Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial, Lancet, 378, 412, 10.1016/S0140-6736(11)60886-6
Ben Nasr, 2017, PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes, Sci. Transl. Med., 9, 10.1126/scitranslmed.aam7543
Ansari, 2003, The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice, J. Exp. Med., 198, 63, 10.1084/jem.20022125
Grohmann, 2003, A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice, J. Exp. Med., 198, 153, 10.1084/jem.20030633
Fallarino, 2009, IDO mediates TLR9-driven protection from experimental autoimmune diabetes, J. Immunol., 183, 6303, 10.4049/jimmunol.0901577
Fallarino, 2009, Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone, J. Exp. Med., 206, 2511, 10.1084/jem.20090134
Pallotta, 2014, Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes, J. Cell. Mol. Med., 18, 2082, 10.1111/jcmm.12360
Mondanelli, 2017, The proteasome inhibitor bortezomib controls indoleamine 2,3-dioxygenase 1 breakdown and restores immune regulation in autoimmune diabetes, Front. Immunol., 8, 428, 10.3389/fimmu.2017.00428
Orabona, 2018, Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes, JCI Insight, 3, 10.1172/jci.insight.96244
Anquetil, 2018, Loss of IDO1 expression from human pancreatic beta-cells precedes their destruction during the development of type 1 diabetes, Diabetes, 67, 1858, 10.2337/db17-1281
