Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia

Biochemistry (Moscow) - Tập 88 - Trang 262-279 - 2023
Alexander V. Arutjunyan1, Gleb O. Kerkeshko1, Yulia P. Milyutina1,2, Anastasiia D. Shcherbitskaia1,3, Irina V. Zalozniaia1, Anastasiia V. Mikhel1, Daria B. Inozemtseva1, Dmitrii S. Vasilev1,3, Anna A. Kovalenko3, Igor Yu. Kogan1
1D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, Russia
2St. Petersburg State Pediatric Medical University, Russian Ministry of Health, St. Petersburg, Russia
3I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.

Tài liệu tham khảo

Burton, G. J., Fowden, A. L., and Thornburg, K. L. (2016) Placental origins of chronic disease, Physiol. Rev., 96, 1509-1565, https://doi.org/10.1152/physrev.00029.2015. Roberts, J. M., and Escudero, C. (2012) The placenta in preeclampsia, Pregnancy Hypertens, 2, 72-83, https://doi.org/10.1016/j.preghy.2012.01.001. Umapathy, A., Chamley, L. W., and James, J. L. (2020) Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies, Angiogenesis, 23, 105-117, https://doi.org/10.1007/s10456-019-09694-w. Chen, D. B., and Zheng, J. (2014) Regulation of placental angiogenesis, Microcirculation, 21, 15-25, https://doi.org/10.1111/micc.12093. Wang, Y., and Zhao, S. (2010) Vascular Biology of the Placenta (Granger D. N., and Granger, J. P., eds) Morgan & Claypool Life Sciences, San Rafael (CA), p. 1-90. Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress, Endocr. Rev., 25, 581-611, https://doi.org/10.1210/er.2003-0027. Silva, J. F., and Serakides, R. (2016) Intrauterine trophoblast migration: A Comparative view of humans and rodents, Cell Adh. Migr., 10, 88-110, https://doi.org/10.1080/19336918.2015.1120397. Gualdoni, G. S., Jacobo, P. V., Barril, C., Ventureira, M. R., and Cebral, E. (2021) Early abnormal placentation and evidence of vascular endothelial growth factor system dysregulation at the feto-maternal interface after periconceptional alcohol consumption, Front. Physiol., 12, 815760, https://doi.org/10.3389/fphys.2021.815760. Sahay, A. S., Sundrani, D. P., and Joshi, S. R. (2017) Neurotrophins: role in placental growth and development, Vitam. Horm., 104, 243-261, https://doi.org/10.1016/bs.vh.2016.11.002. Kawamura, K., Kawamura, N., Sato, W., Fukuda, J., Kumagai, J., and Tanaka, T. (2009) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival, Endocrinology, 150, 3774-3782, https://doi.org/10.1210/en.2009-0213. Fujita, K., Tatsumi, K., Kondoh, E., Chigusa, Y., Mogami, H., Fujii, T., Yura, S., Kakui, K., and Konishi, I. (2011) Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors, Placenta, 32, 737-744, https://doi.org/10.1016/j.placenta.2011.07.001. Kawamura, K., Kawamura, N., Okamoto, N., and Manabe, M. (2013) Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling, Cancer Med., 2, 849-861, https://doi.org/10.1002/cam4.158. Toti, P., Ciarmela, P., Florio, P., Volpi, N., Occhini, R., and Petraglia, F. (2006) Human placenta and fetal membranes express nerve growth factor mRNA and protein, J. Endocrinol. Invest., 29, 337-341, https://doi.org/10.1007/BF03344105. Mayeur, S., Silhol, M., Moitrot, E., Barbaux, S., Breton, C., Gabory, A., Vaiman, D., Dutriez-Casteloot, I., Fajardy, I., Vambergue, A., Tapia-Arancibia, L., Bastide, B., Storme, L., Junien, C., Vieau, D., and Lesage, J. (2010) Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human, Placenta, 31, 785-791, https://doi.org/10.1016/j.placenta.2010.06.008. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2003) Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat, J. Neuroimmunol., 138, 49-55, https://doi.org/10.1016/S0165-5728(03)00095-X. Kodomari, I., Wada, E., Nakamura, S., and Wada, K. (2009) Maternal supply of BDNF to mouse fetal brain through the placenta, Neurochem. Int., 54, 95-98, https://doi.org/10.1016/j.neuint.2008.11.005. Briana, D. D., and Malamitsi-Puchner, A. (2018) Developmental origins of adult health and disease: The metabolic role of BDNF from early life to adulthood, Metabolism, 81, 45-51, https://doi.org/10.1016/j.metabol.2017.11.019. Boldyrev, A. A. (2009) Molecular mechanisms of homocysteine toxicity, Biochemistry (Moscow), 74, 589-598, https://doi.org/10.1134/s0006297909060017. Skovierova, H., Vidomanova, E., Mahmood, S., Sopkova, J., Drgova, A., Cervenova, T., Halasova, E., and Lehotsky, J. (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health, Int. J. Mol. Sci., 17, 1733, https://doi.org/10.3390/ijms17101733. Kasture, V., Sundrani, D., Randhir, K., Wagh, G., and Joshi, S. (2021) Placental apoptotic markers are associated with placental morphometry, Placenta, 115, 1-11, https://doi.org/10.1016/j.placenta.2021.08.051. Kasture, V. V., Sundrani, D. P., and Joshi, S. R. (2018) Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia, Life Sci., 206, 61-69, https://doi.org/10.1016/j.lfs.2018.05.029. Pereira, R. D., De Long, N. E., Wang, R. C., Yazdi, F. T., Holloway, A. C., and Raha, S. (2015) Angiogenesis in the placenta: the role of reactive oxygen species signaling, Biomed. Res. Int., 2015, 814543, https://doi.org/10.1155/2015/814543. Zhang, Q., Li, Q., Chen, Y., Huang, X., Yang, I. H., Cao, L., Wu, W. K., and Tan, H. M. (2012) Homocysteine-impaired angiogenesis is associated with VEGF/VEGFR inhibition, Front. Biosci. (Elite Ed), 4, 2525-2535, https://doi.org/10.2741/e563. Rodriguez-Nieto, S., Chavarria, T., Martinez-Poveda, B., Sanchez-Jimenez, F., Rodriguez Quesada, A., and Medina, M. A. (2002) Anti-angiogenic effects of homocysteine on cultured endothelial cells, Biochem. Biophys. Res. Commun., 293, 497-500, https://doi.org/10.1016/S0006-291X(02)00232-2. Pan, L., Yu, G., Huang, J., Zheng, X., and Xu, Y. (2017) Homocysteine inhibits angiogenesis through cytoskeleton remodeling, Biosci. Rep., 37, BSR20170860, https://doi.org/10.1042/BSR20170860. Latacha, K. S., and Rosenquist, T. H. (2005) Homocysteine inhibits extra-embryonic vascular development in the avian embryo, Dev. Dyn., 234, 323-331, https://doi.org/10.1002/dvdy.20527. Oosterbaan, A. M., Steegers, E. A., and Ursem, N. T. (2012) The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development, Microvasc. Res., 83, 98-104, https://doi.org/10.1016/j.mvr.2011.11.001. Xu, X., Yang, X. Y., He, B. W., Yang, W. J., and Cheng, W. W. (2016) Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol., 196, 69-75, https://doi.org/10.1016/j.ejogrb.2015.11.017. Bala, R., Verma, R., Budhwar, S., Prakash, N., and Sachan, S. (2022) Fetal hyperhomocysteinemia is associated with placental inflammation and early breakdown of maternal-fetal tolerance in pre-term birth, Am. J. Reprod. Immunol., 88, e13589, https://doi.org/10.1111/aji.13589. Arutjunyan, A. V., Milyutina, Y. P., Shcherbitskaia, A. D., Kerkeshko, G. O., Zalozniaia, I. V., and Mikhel, A. V. (2020) Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia, Biochemistry (Moscow), 85, 248-259, https://doi.org/10.1134/S000629792002008X. Dai, C., Fei, Y., Li, J., Shi, Y., and Yang, X. (2021) A novel review of homocysteine and pregnancy complications, Biomed. Res. Int., 2021, 6652231, https://doi.org/10.1155/2021/6652231. Rosenfeld, C. S. (2021) The placenta-brain-axis, J. Neurosci. Res., 99, 271-283, https://doi.org/10.1002/jnr.24603. Shallie, P. D., and Naicker, T. (2019) The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment, Int. J. Dev. Neurosci., 73, 41-49, https://doi.org/10.1016/j.ijdevneu.2019.01.003. Burton, G. J., and Jauniaux, E. (2018) Pathophysiology of placental-derived fetal growth restriction, Am. J. Obstet. Gynecol., 218, S745-S761, https://doi.org/10.1016/j.ajog.2017.11.577. Burton, G. J., Redman, C. W., Roberts, J. M., and Moffett, A. (2019) Pre-eclampsia: pathophysiology and clinical implications, BMJ, 366, l2381, https://doi.org/10.1136/bmj.l2381. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., Gerasimova, E., Ziyatdinova, G., Hermann, A., and Sitdikova, G. (2020) Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress, Biomolecules, 10, 995, https://doi.org/10.3390/biom10070995. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Bulygina, Y., Mashkina, A., and Khavinson, V. (2012) Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 5, 179-185. Baydas, G., Koz, S. T., Tuzcu, M., and Nedzvetsky, V. S. (2008) Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats, J. Pineal Res., 44, 181-188, https://doi.org/10.1111/j.1600-079X.2007.00506.x. Shcherbitskaya, A. D., Milyutina, Y. P., Zaloznyaya, I. V., Arutjunyan, A. V., Nalivaeva, N. N., and Zhuravin, I. A. (2017) The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus, Neurochem. J., 11, 296-301, https://doi.org/10.1134/s1819712417040080. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1006/abio.1976.9999. Gavrilov, V. B., Gavrilova, A. R., and Mazhul, L. M. (1987) Analysis of methods for determining lipid peroxidation products in blood serum according to the test with TBA [in Russian], Vopr. Med. Khim., 33, 118-122. Vasilev, D. S., Shcherbitskaia, A. D., Tumanova, N. L., Mikhel, A. V., Milyutina, Y. P., Kovalenko, A. A., Dubrovskaya, N. M., Inozemtseva, D. B., Zalozniaia, I. V., and Arutjunyan, A. V. (2023) Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis, Cells, 12, 189, https://doi.org/10.3390/cells12010189. Bass, J. J., Wilkinson, D. J., Rankin, D., Phillips, B. E., Szewczyk, N. J., Smith, K., and Atherton, P. J. (2017) An overview of technical considerations for Western blotting applications to physiological research, Scand. J. Med. Sci. Sports, 27, 4-25, https://doi.org/10.1111/sms.12702. Voronkina, I. V., Kirpichnikova, K. M., Smagina, L. V., Kozhukharova, I. V., and Gamaley, I. A. (2011) Change of activity of matrix metalloproteinases of mouse primary fibroblasts in the process of cultivation, Tsitologiya, 53, 49-54. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262. Mori, M., Yamashita, Y., Hiroi, Y., Shinjo, S., Asato, R., Hirai, K., Suzuki, K., and Yamamoto, S. (1999) Effect of single essential amino acid excess during pregnancy on dietary nitrogen utilization and fetal growth in rats, Asia Pac. J. Clin. Nutr., 8, 251-257, https://doi.org/10.1046/j.1440-6047.1999.00094.x. Yakovleva, O. V., Ziganshina, A. R., Dmitrieva, S. A., Arslanova, A. N., Yakovlev, A. V., Minibayeva, F. V., Khaertdinov, N. N., Ziyatdinova, G. K., Giniatullin, R. A., and Sitdikova, G. F. (2018) Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia, Oxid. Med. Cell. Longev, 2018, 2746873, https://doi.org/10.1155/2018/2746873. Furukawa, S., Tsuji, N., and Sugiyama, A. (2019) Morphology and physiology of rat placenta for toxicological evaluation, J. Toxicol. Pathol., 32, 1-17, https://doi.org/10.1293/tox.2018-0042. Esse, R., Barroso, M., Tavares de Almeida, I., and Castro, R. (2019) The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art, Int. J. Mol. Sci., 20, 867, https://doi.org/10.3390/ijms20040867. Koz, S. T., Gouwy, N. T., Demir, N., Nedzvetsky, V. S., Etem, E., and Baydas, G. (2010) Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain, Int. J. Dev. Neurosci., 28, 325-329, https://doi.org/10.1016/j.ijdevneu.2010.02.006. Li, W., Li, Z., Zhou, D., Zhang, X., Yan, J., and Huang, G. (2019) Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain, Int. J. Dev. Neurosci., 72, 6-12, https://doi.org/10.1016/j.ijdevneu.2018.11.002. Ikonomidou, C., and Kaindl, A. M. (2011) Neuronal death and oxidative stress in the developing brain, Antioxid. Redox Signal, 14, 1535-1550, https://doi.org/10.1089/ars.2010.3581. Pustygina, A. V., Milyutina, Y. P., Zaloznyaya, I. V., and Arutyunyan, A. V. (2015) Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocysteinemia, Neurochem. J., 9, 60-65, https://doi.org/10.1134/s1819712415010079. Di Simone, N., Maggiano, N., Caliandro, D., Riccardi, P., Evangelista, A., Carducci, B., and Caruso, A. (2003) Homocysteine induces trophoblast cell death with apoptotic features, Biol. Reprod., 69, 1129-1134, https://doi.org/10.1095/biolreprod.103.015800. Kamudhamas, A., Pang, L., Smith, S. D., Sadovsky, Y., and Nelson, D. M. (2004) Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am. J. Obstet. Gynecol., 191, 563-571, https://doi.org/10.1016/j.ajog.2004.01.037. Faverzani, J. L., Hammerschmidt, T. G., Sitta, A., Deon, M., Wajner, M., and Vargas, C. R. (2017) Oxidative stress in homocystinuria due to cystathionine ss-synthase deficiency: findings in patients and in animal models, Cell Mol. Neurobiol., 37, 1477-1485, https://doi.org/10.1007/s10571-017-0478-0. Krause, B. J., Hanson, M. A., and Casanello, P. (2011) Role of nitric oxide in placental vascular development and function, Placenta, 32, 797-805, https://doi.org/10.1016/j.placenta.2011.06.025. Baydas, G., Reiter, R. J., Akbulut, M., Tuzcu, M., and Tamer, S. (2005) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels, Neuroscience, 135, 879-886, https://doi.org/10.1016/j.neuroscience.2005.05.048. Li, Y., Gao, R., Liu, X., Chen, X., Liao, X., Geng, Y., Ding, Y., Wang, Y., and He, J. (2015) Folate deficiency could restrain decidual angiogenesis in pregnant mice, Nutrients, 7, 6425-6445, https://doi.org/10.3390/nu7085284. Lai, W. K., and Kan, M. Y. (2015) Homocysteine-induced endothelial dysfunction, Ann. Nutr. Metab., 67, 1-12, https://doi.org/10.1159/000437098. Chen, Y. Y., Gupta, M. B., Grattton, R., Powell, T. L., and Jansson, T. (2018) Down-regulation of placental folate transporters in intrauterine growth restriction, J. Nutr. Biochem., 59, 136-141, https://doi.org/10.1016/j.jnutbio.2018.06.003. Hague, W. M. (2003) Homocysteine and pregnancy, Best Pract. Res. Clin. Obstet. Gynaecol., 17, 459-469, https://doi.org/10.1016/S1521-6934(03)00009-9. Li, H., Qu, D., McDonald, A., Isaac, S. M., Whiteley, K. J., Sung, H. K., Nagy, A., and Adamson, S. L. (2014) Trophoblast-specific reduction of VEGFA alters placental gene expression and maternal cardiovascular function in mice, Biol. Reprod., 91, 87, https://doi.org/10.1095/biolreprod.114.118299. Silva, J. F., Ocarino, N. M., and Serakides, R. (2017) Spatiotemporal expression profile of proteases and immunological, angiogenic, hormonal and apoptotic mediators in rat placenta before and during intrauterine trophoblast migration, Reprod. Fertil. Dev., 29, 1774-1786, https://doi.org/10.1071/RD16280. Gualdoni, G. S., Ventureira, M. R., Coll, T. A., Palomino, W. A., Barbeito, C. G., and Cebral, E. (2021) Perigestational alcohol consumption induces altered early placentation and organogenic embryo growth restriction by disruption of trophoblast angiogenic factors, Reprod. Biomed. Online, 42, 481-504, https://doi.org/10.1016/j.rbmo.2020.10.015. Rennie, M. Y., Detmar, J., Whiteley, K. J., Jurisicova, A., Adamson, S. L., and Sled, J. G. (2012) Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice, Am. J. Physiol. Heart Circ. Physiol., 302, H1261-H1273, https://doi.org/10.1152/ajpheart.00776.2011. Coan, P. M., Ferguson-Smith, A. C., and Burton, G. J. (2004) Developmental dynamics of the definitive mouse placenta assessed by stereology, Biol. Reprod., 70, 1806-1813, https://doi.org/10.1095/biolreprod.103.024166. Vaswani, K., Hum, M. W., Chan, H. W., Ryan, J., Wood-Bradley, R. J., Nitert, M. D., Mitchell, M. D., Armitage, J. A., and Rice, G. E. (2013) The effect of gestational age on angiogenic gene expression in the rat placenta, PLoS One, 8, e83762, https://doi.org/10.1371/journal.pone.0083762. Mesiano, S. (2019) Endocrinology of Human Pregnancy and Fetal-Placental Neuroendocrine Development, in Yen and Jaffe's Reproductive Endocrinology (Eighth Edition), Elsevier, p. 256-284.e9, https://doi.org/10.1016/B978-0-323-47912-7.00011-1. Choi, S. J., Park, J. Y., Lee, Y. K., Choi, H. I., Lee, Y. S., Koh, C. M., and Chung, I. B. (2002) Effects of cytokines on VEGF expression and secretion by human first trimester trophoblast cell line, Am. J. Reprod. Immunol., 48, 70-76, https://doi.org/10.1034/j.1600-0897.2002.01071.x. Hemberger, M., Nozaki, T., Masutani, M., and Cross, J. C. (2003) Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion, Dev. Dyn., 227, 185-191, https://doi.org/10.1002/dvdy.10291. Chen, J., and Khalil, R. A. (2017) Matrix metalloproteinases in normal pregnancy and preeclampsia, Prog. Mol. Biol. Transl. Sci., 148, 87-165, https://doi.org/10.1016/bs.pmbts.2017.04.001. Funahashi, Y., Shawber, C. J., Sharma, A., Kanamaru, E., Choi, Y. K., and Kitajewski, J. (2011) Notch modulates VEGF action in endothelial cells by inducing matrix metalloprotease activity, Vasc. Cell, 3, 2, https://doi.org/10.1186/2045-824X-3-2. Li, W., Mata, K. M., Mazzuca, M. Q., and Khalil, R. A. (2014) Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy, Biochem. Pharmacol., 89, 370-385, https://doi.org/10.1016/j.bcp.2014.03.017. Yang, P. F., Li, J. K., and Xiong, Q. (2007) Homocysteine decreases the invasion in cultured human trophoblasts: relationship between homocysteine and matrix metalloproteinase-2, -9 expression [in Chinese], Zhonghua Fu Chan Ke Za Zhi, 42, 184-186. Bescond, A., Augier, T., Chareyre, C., Garcon, D., Hornebeck, W., and Charpiot, P. (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity, Biochem. Biophys. Res. Commun., 263, 498-503, https://doi.org/10.1006/bbrc.1999.1391. Almeida-Toledano, L., Andreu-Fernandez, V., Aras-Lopez, R., Garcia-Algar, O., Martinez, L., and Gomez-Roig, M. D. (2021) Epigallocatechin gallate ameliorates the effects of prenatal alcohol exposure in a fetal alcohol spectrum disorder-like mouse model, Int. J. Mol. Sci., 22, 715, https://doi.org/10.3390/ijms22020715. Bry, M., Kivela, R., Leppanen, V. M., and Alitalo, K. (2014) Vascular endothelial growth factor-B in physiology and disease, Physiol. Rev., 94, 779-794, https://doi.org/10.1152/physrev.00028.2013. Vogtmann, R., Kuhnel, E., Dicke, N., Verkaik-Schakel, R. N., Plosch, T., Schorle, H., Stojanovska, V., Herse, F., Koninger, A., Kimmig, R., Winterhager, E., and Gellhaus, A. (2019) Human sFLT1 leads to severe changes in placental differentiation and vascularization in a transgenic hsFLT1/rtTA FGR mouse model, Front. Endocrinol. (Lausanne), 10, 165, https://doi.org/10.3389/fendo.2019.00165. Chen, R., Lee, C., Lin, X., Zhao, C., and Li, X. (2019) Novel function of VEGF-B as an antioxidant and therapeutic implications, Pharmacol. Res., 143, 33-39, https://doi.org/10.1016/j.phrs.2019.03.002. Nico, B., Mangieri, D., Benagiano, V., Crivellato, E., and Ribatti, D. (2008) Nerve growth factor as an angiogenic factor, Microvasc. Res., 75, 135-141, https://doi.org/10.1016/j.mvr.2007.07.004. Caporali, A., and Emanueli, C. (2009) Cardiovascular actions of neurotrophins, Physiol. Rev., 89, 279-308, https://doi.org/10.1152/physrev.00007.2008. Kim, H., Li, Q., Hempstead, B. L., and Madri, J. A. (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells, J. Biol. Chem., 279, 33538-33546, https://doi.org/10.1074/jbc.M404115200. Sahay, A., Kale, A., and Joshi, S. (2020) Role of neurotrophins in pregnancy and offspring brain development, Neuropeptides, 83, 102075, https://doi.org/10.1016/j.npep.2020.102075. Dhobale, M. (2014) Neurotrophins: role in adverse pregnancy outcome, Int. J. Dev. Neurosci., 37, 8-14, https://doi.org/10.1016/j.ijdevneu.2014.06.005. Dhobale, M. (2017) Neurotrophic factors and maternal nutrition during pregnancy, Vitam. Horm., 104, 343-366, https://doi.org/10.1016/bs.vh.2016.10.011. Mayeur, S., Lukaszewski, M. A., Breton, C., Storme, L., Vieau, D., and Lesage, J. (2011) Do neurotrophins regulate the feto-placental development? Med. Hypotheses, 76, 726-728, https://doi.org/10.1016/j.mehy.2011.02.008. Garces, M. F., Sanchez, E., Torres-Sierra, A. L., Ruiz-Parra, A. I., Angel-Muller, E., Alzate, J. P., Sanchez, A. Y., Gomez, M. A., Romero, X. C., Castaneda, Z. E., Sanchez-Rebordelo, E., Dieguez, C., Nogueiras, R., and Caminos, J. E. (2014) Brain-derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species, Clin. Endocrinol. (Oxf), 81, 141-151, https://doi.org/10.1111/cen.12391. Sahay, A. S., Sundrani, D. P., Wagh, G. N., Mehendale, S. S., and Joshi, S. R. (2015) Neurotrophin levels in different regions of the placenta and their association with birth outcome and blood pressure, Placenta, 36, 938-943, https://doi.org/10.1016/j.placenta.2015.06.006. Sahay, A. S., Jadhav, A. T., Sundrani, D. P., Wagh, G. N., and Joshi, S. R. (2019) Differential expression of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in different regions of normal and preeclampsia placentae, Clin. Exp. Hypertens, 42, 360-364, https://doi.org/10.1080/10641963.2019.1665677. Dhobale, M. V., Pisal, H. R., Mehendale, S. S., and Joshi, S. R. (2013) Differential expression of human placental neurotrophic factors in preterm and term deliveries, Int. J. Dev. Neurosci., 31, 719-723, https://doi.org/10.1016/j.ijdevneu.2013.09.006. Kawamura, K., Kawamura, N., Kumazawa, Y., Kumagai, J., Fujimoto, T., and Tanaka, T. (2011) Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy, Endocrinology, 152, 1090-1100, https://doi.org/10.1210/en.2010-1124. Frank, P., Barrientos, G., Tirado-Gonzalez, I., Cohen, M., Moschansky, P., Peters, E. M., Klapp, B. F., Rose, M., Tometten, M., and Blois, S. M. (2014) Balanced levels of nerve growth factor are required for normal pregnancy progression, Reproduction, 148, 179-189, https://doi.org/10.1530/REP-14-0112. Kanai-Azuma, M., Kanai, Y., Matsuda, H., Kurohmaru, M., Tachi, C., Yazaki, K., and Hayashi, Y. (1997) Nerve growth factor promotes giant-cell transformation of mouse trophoblast cells in vitro, Biochem. Biophys. Res. Commun., 231, 309-315, https://doi.org/10.1006/bbrc.1996.6032. Fahnestock, M., and Shekari, A. (2019) ProNGF and neurodegeneration in Alzheimer’s disease, Front. Neurosci., 13, 129, https://doi.org/10.3389/fnins.2019.00129. Teng, K. K., Felice, S., Kim, T., and Hempstead, B. L. (2010) Understanding proneurotrophin actions: Recent advances and challenges, Dev. Neurobiol., 70, 350-359, https://doi.org/10.1002/dneu.20768. Lee, R., Kermani, P., Teng, K. K., and Hempstead, B. L. (2001) Regulation of cell survival by secreted proneurotrophins, Science, 294, 1945-1948, https://doi.org/10.1126/science.1065057. Fleitas, C., Pinol-Ripoll, G., Marfull, P., Rocandio, D., Ferrer, I., Rampon, C., Egea, J., and Espinet, C. (2018) proBDNF is modified by advanced glycation end products in Alzheimer’s disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing, Mol. Brain, 11, 68, https://doi.org/10.1186/s13041-018-0411-6. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2005) Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat, J. Neuroimmunol., 159, 106-112, https://doi.org/10.1016/j.jneuroim.2004.10.008. Fornes, R., Hu, M., Maliqueo, M., Kokosar, M., Benrick, A., Carr, D., Billig, H., Jansson, T., Manni, L., and Stener-Victorin, E. (2016) Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth, Mol. Cell. Endocrinol., 433, 1-11, https://doi.org/10.1016/j.mce.2016.05.014.