Imatinib and M351-0056 enhance the function of VISTA and ameliorate the development of SLE via IFN-I and noncanonical NF-κB pathway
Tóm tắt
V-domain immunoglobulin suppressor of T-cell activation (VISTA), an important negative checkpoint protein, participates in immunoregulation. Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients exhibit high levels of autoantibodies and multi-organ tissue injury, primarily involving the kidney and skin. In wild-type (WT) mice and Vsir-/- mice with pristane-induced lupus-like disease, we found that VISTA deficiency exacerbated the lupus-like disease in mice, possibly through aberrant activation of type I interferon (IFN-I) signaling, CD4+ T cell, and noncanonical nuclear factor-κB (NF-κB) pathway. Surface plasmon resonance results showed that imatinib, an FDA-approved tyrosine kinase inhibitor, may have a high affinity for human VISTA-ECD with a KD value of 0.2009 μM. The biological activities of imatinib and VISTA agonist M351-0056 were studied in monocytes and T cells and in lupus-like disease murine model of chronic graft-versus-host disease (cGVHD) and lupus-prone MRL/lpr mice. VISTA small-molecule agonist reduced the cytokine production of peripheral blood mononuclear cells (PBMCs) and Jurkat cells and inhibited PBMCs proliferation. Moreover, they attenuated the levels of autoantibodies, renal injury, inflammatory cytokines, chemokines, and immune cell expansion in the cGVHD mouse model and MRL/lpr mice. Our findings also demonstrated that VISTA small-molecule agonist ameliorated the development of SLE through improving aberrantly activated IFN-I signaling and noncanonical NF-κB pathway. In conclusion, VISTA has a protective effect on the development and progression of SLE. VISTA agonist M351-0056 and imatinib have been firstly demonstrated to attenuate SLE, suggesting interventions to enhance VISTA function may be effective in treating SLE.
Tài liệu tham khảo
Accapezzato D, Caccavale R, Paroli MP, et al. Advances in the pathogenesis and treatment of systemic lupus erythematosus. Int J Mol Sci. 2023;24(7):6578. https://doi.org/10.3390/ijms24076578.
Ba X, Wang H, Huang Y, et al. Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway. J Ethnopharmacol. 2023;12(309):116274. https://doi.org/10.1016/j.jep.2023.116274.
Blair HA, Duggan ST. Belimumab: a review in systemic lupus erythematosus. Drugs. 2018;78(3):355–66. https://doi.org/10.1007/s40265-018-0872-z.
Ceeraz S, Sergent PA, Plummer SF, et al. VISTA deficiency accelerates the development of fatal murine lupus nephritis. Arthritis Rheumatol. 2017;69(4):814–25. https://doi.org/10.1002/art.40020.
Chen XC, Wu D, Wu HL, et al. Metformin improves renal injury of MRL/lpr lupus-prone mice via the AMPK/STAT3 pathway. Lupus Sci Med. 2022;9(1):e000611. https://lupus.bmj.com/content/9/1/e000611
Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB signaling in health and disease. Trends Mol Med. 2016;22(5):414–29. https://doi.org/10.1016/j.molmed.2016.03.002.
Dingyi Y, Yuxin Z, Wanmei L, et al. Transcriptome profiling reveals transcriptional regulation of VISTA in T cell activation. Mol Immunol. 2023;157:101–11. https://doi.org/10.1016/j.molimm.2023.03.021.
ElTanbouly MA, Croteau W, Noelle RJ, et al. VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol. 2019;42:101308. https://doi.org/10.1016/j.smim.2019.101308.
ElTanbouly MA, Zhao Y, Nowak E, et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science. 2020;367(6475):eaay0524. https://doi.org/10.1126/science.aay0524.
Fisher CE, Ahmad SA, Fitch PM, et al. FITC-induced murine pulmonary inflammation: CC10 up-regulation and concurrent Shh expression. Cell Biol Int. 2005;29(10):868–76. https://doi.org/10.1016/j.cellbi.2005.07.002.
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine. 2021 Oct;146:155633. https://doi.org/10.1016/j.cyto.2021.155633.
Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo hydroxychloroquine and ex vivo anti-BDCA2 mAb treatment on pDC IFNα production from patients affected with cutaneous lupus erythematosus. Front Immunol. 2019;10(275):3389.
Han X, Vesely MD, Yang W, et al. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Sci Transl Med. 2019;11(522):eaax1159. https://doi.org/10.1126/scitranslmed.aax1159.
Hillion S, Arleevskaya MI, Blanco P, et al. The innate part of the adaptive immune system. Clin Rev Allergy Immunol. 2020 Apr;58(2):151–4. https://doi.org/10.1007/s12016-019-08740-1.
Hosseinkhani N, Derakhshani A, Shadbad MA, et al. The role of V-domain Ig suppressor of T cell activation (VISTA) in cancer therapy: lessons learned and the road ahead. Front Immunol. 2021 May;19(12):676181. https://doi.org/10.3389/fimmu.2021.676181.
Hu X, Qie C, Jiang J, Xie X, et al. M351-0056 is a novel low MW compound modulating the actions of the immune-checkpoint protein VISTA. Br J Pharmacol. 2021;178(6):1445–58. https://doi.org/10.1111/bph.15357.
Jiang J, Zhao M, Chang C, et al. Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin Rev Allergy Immunol. 2020;59(2):248–72. https://doi.org/10.1007/s12016-020-08798-2.
Kegerreis BJ, Catalina MD, Geraci NS, et al. Genomic identification of low-density granulocytes and analysis of their role in the pathogenesis of systemic lupus erythematosus. J Immunol. 2019;202(11):3309–17. https://doi.org/10.4049/jimmunol.1801512.
Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172(11):ITC81–96. https://doi.org/10.7326/aitc202006020.
Klavdianou K, Lazarini A. Fanouriakis A Targeted biologic therapy for systemic lupus erythematosus: emerging pathways and drug pipeline. Biodrugs. 2020;34(2):133–47. https://doi.org/10.1007/s40259-020-00405-2.
Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity. 2019;50(4):907–23. https://doi.org/10.1016/j.immuni.2019.03.025.
Liang CL, Jiang H, Feng W, et al. Total glucosides of paeony ameliorate pristane-induced lupus nephritis by inducing PD-1 ligands+ macrophages via activating IL-4/STAT6/PD-L2 signaling. Front Immunol. 2021;12:683249.
Liu F, Zhuang S. Role of receptor tyrosine kinase signaling in renal fibrosis. Int J Mol Sci. 2016;17(5):972. https://doi.org/10.3390/ijms17060972.
Liu R, Huang X, Ye H, et al. Lupus Recipe inhibits cGVHD-induced lupus nephritis in mice and promote renal LC3-associated autophagy. Immun Inflamm Dis. 2023;(11, 3):e815. https://doi.org/10.1002/iid3.815.
Mazewski C, Perez RE, Fish EN, et al. Type I interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways. Front Immunol. 2020;11:606456. https://doi.org/10.3389/fimmu.2020.606456.
Mehta N, Maddineni S, Mathews II, et al. Structure and functional binding epitope of V-domain Ig suppressor of T cell activation. Cell Rep. 2019;28(10):2509–2516.e5. https://doi.org/10.1016/j.celrep.2019.07.073.
Mulati K, Hamanishi J, Matsumura N, et al. VISTA expressed in tumour cells regulates T cell function. Br J Cancer. 2019 Jan;120(1):115–27. https://doi.org/10.1038/s41416-018-0313-5.
Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol. 2019;15(7):403–12. https://doi.org/10.1038/s41584-019-0235-5.
Nowak EC, Lines JL, Varn FS, et al. Immunoregulatory functions of VISTA. Immunol Rev. 2017;276(1):66–79. https://doi.org/10.1111/imr.12525.
Pan L, Lu MP, Wang JH, et al. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16(1):19–30. https://doi.org/10.1007/s12519-019-00229-3.
Ruiz-Irastorza G, Bertsias G. Treating systemic lupus erythematosus in the 21st century: new drugs and new perspectives on old drugs. Rheumatology (Oxford). 2020;59(Suppl5):v69–81. https://doi.org/10.1093/rheumatology/keaa403.
Samotij D, Reich A. Biologics in the treatment of lupus erythematosus: a critical literature review. Biomed Res Int. 2019;2019:8142368. https://doi.org/10.1155/2019/8142368.
Sato S, Zhang XK, Matsuoka N, et al. Transcription factor Fli-1 impacts the expression of CXCL13 and regulates immune cell infiltration into the kidney in MRL/lpr mouse. Lupus Sci Med. 2023;10(1):e000870. https://doi.org/10.1136/lupus-2022-000870.
Sergent PA, Plummer SF, Pettus J, et al. Blocking the VISTA pathway enhances disease progression in (NZB × NZW) F1 female mice. Lupus. 2018;27(2):210–6. https://doi.org/10.1177/0961203317716322.
Singh JA, Shah NP, Mudano AS. Belimumab for systemic lupus erythematosus. Cochrane Database Syst Rev. 2021 Feb 25;2(2):CD010668. https://doi.org/10.1002/14651858.cd010668.pub2.
Slater BT, Han X, Chen L, et al. Structural insight into T cell coinhibition by PD-1H (VISTA). Proc Natl Acad Sci USA. 2020;117(3):1648–57. https://doi.org/10.1073/pnas.1908711117.
Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–58. https://doi.org/10.1038/nri.2017.52.
Tanaka Y. Systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2022;36(4):101814. https://doi.org/10.1016/j.berh.2022.101814.
Wang L, Le Mercier I, Putra J, et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci USA. 2014;111(41):14846–51. https://doi.org/10.1073/pnas.1407447111.
Yu C, Li P, Dang X, et al. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun. 2022;132:102871. https://doi.org/10.1016/j.jaut.2022.102871.
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. https://doi.org/10.1038/s41392-020-00312-6.
Zhang Y, Zhang X, Han J, et al. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure. Hepatol Int. 2023;17(4):1000–15. https://doi.org/10.1007/s12072-023-10505-0.