Imaging hypoxia to improve radiotherapy outcome

Nature Reviews Clinical Oncology - Tập 9 Số 12 - Trang 674-687 - 2012
Michael R. Horsman1, Lise Saksø Mortensen1, Jørgen B. B. Petersen2, Morten Busk1, Jens Overgaard1
1Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Aarhus, DK-8000, Denmark
2Department of Medical Physics, Aarhus University Hospital, Nørrebrogade 44, Aarhus, DK-8000, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Horsman, M. R., Lindegaard, J. C., Grau, C., Nordsmark, M. & Overgaard, J. in Clinical Radiation Oncology, 3rd edn (ed. Gunderson, L. L. & Tepper, J. E.) 53–64 (Saunders, Philadelphia, 2012).

Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic micro-environment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

Overgaard, J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – a systematic review and meta-analysis. Radiother. Oncol. 100, 22–32 (2011).

Harris, A. L. Hypoxia–a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425–437 (2008).

Brem, S., Brem, H., Folkman, J., Finkelstein, D. & Patz, A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 36, 2807–2812 (1976).

Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656 (1979).

Chaplin, D. J., Olive, P. L. & Durand, R. E. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res. 47, 597–601 (1987).

Powell, M. E., Hill, S. A., Saunders, M. I., Hoskin, P. J. & Chaplin, D. J. Human tumor blood flow is enhanced by nicotinamide and carbogen breathing. Cancer Res. 57, 5261–5264 (1997).

Begg, A. C. et al. Hypoxia and perfusion measurements in human tumours—initial experience with pimonidazole and IUdR. Acta Oncol. 40, 924–928 (2001).

Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).

Bayer, C., Shi, K., Astner, S. T., Maftei, C. A. & Vaupel, P. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int. J. Radiat. Oncol. Biol. Phys. 80, 965–968 (2011).

Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

Wouters, B. G. & Brown, J. M. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 147, 541–550 (1997).

Menegakis, A. et al. Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours. Radiother. Oncol. 100, 137–144 (2011).

Hoff, C. M. Importance of hemoglobin concentration and its modification for the outcome of head and neck cancer patients treated with radiotherapy. Acta Oncol. 51, 419–432 (2012).

Chaplin, D. J. & Trotter, M. J. in Tumor Blood Supply and Metabolic Microenvironment: Characterization and Implications for Therapy (eds Vaupel, P. & Jain, R. K.) 65–85 (Gustav Fischer Verlag, Stuttgart, 1991).

Kimura, H. et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522–5528 (1996).

Horsman, M. R., Wouters, B. G., Joiner, M. C. & Overgaard, J. in Basic Clinical Radiobiology, 4th edn (eds van der Kogel, A. J. & Joiner, M. C.) 207–216 (Hodder Arnold, London, 2009).

Howard-Flanders, P. & Moore, D. The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. 1. A search for an effect of oxygen 0.02 seconds after pulsed irradiation. Radiat. Res. 9, 422–437 (1958).

Denekamp, J. & Dasu, A. Inducible repair and the two forms of tumour hypoxia–time for a paradigm shift. Acta Oncol. 38, 903–918 (1999).

Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol. 25, 4066–4074 (2007).

Lunt, S. J., Chaudary, N. & Hill, R. P. The tumor microenvironment and metastatic disease. Clin. Exp. Metastasis. 26, 19–34 (2009).

Horsman, M. R. & Overgaard, J. Hyperthermia: a potent enhancer of radiotherapy. Clin. Oncol. 19, 418–426 (2007).

Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–2104 (2006).

Overgaard, J., Eriksen, J. G., Nordsmark, M., Alsner, J. & Horsman, M. R. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 6, 757–764 (2005).

Janssens, G. O. et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J. Clin. Oncol. 30, 1777–1783 (2012).

Toustrup, K. et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 71, 5923–5931 (2011).

Søvik, Å, Malinen, E. & Olsen, D. R. Strategies for biologic image-guided dose escalation: a review. Int. J. Radiat. Oncol. Biol. Phys. 73, 650–658 (2009).

Bentzen, S. M. & Gregoire, V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin. Radiat. Oncol. 21, 101–110 (2011).

Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

Galvin, J. M. & De Neve, W. Intensity modulating and other radiation therapy devices for dose painting. J. Clin. Oncol. 25, 924–930 (2007).

Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 6, 112–117 (2005).

Busk, M. et al. Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast? Radiother. Oncol. 92, 429–436 (2009).

Popple, R. A., Ove, R. & Shen, S. Tumor control probability for selective boosting of hypoxic sub-volumes, including the effect of reoxygenation. Int. J. Radiat. Oncol. Biol. Phys. 54, 921–927 (2002).

Hendrickson, K. et al. Hypoxia imaging with [18F] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother. Oncol. 101, 369–375 (2011).

Søvik, A., Malinen, E., Bruland, Ø. S., Bentzen, S. M. & Olsen, D. R. Optimization of tumour control probability in hypoxic tumours by radiation dose redistribution: a modelling study. Phys. Med. Biol. 52, 499–513 (2007).

Thorwarth, D., Eschmann, S. M., Paulsen, F. & Alber, M. Hypoxia dose painting by numbers: a planning study. Int. J. Radiat. Oncol. Biol. Phys. 68, 291–300 (2007).

Adams, G. E. & Cooke, M. S. Electron.-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 15, 457–471 (1969).

Varghese, A. J. & Whitmore, G. F. Binding to cellular macromolecules as a possible mechanism for the cytotoxicity of misonidazole. Cancer Res. 40, 2165–2169 (1980).

Koh, W. J. et al. Imaging of hypoxia in human tumors with [F-18] fluoromisonidazole. Int. J. Radiat. Oncol. Biol. Phys. 22, 199–212 (1992).

Rasey, J. S. et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 417–428 (1996).

Busk, M., Horsman, M. R. & Overgaard, J. Resolution in PET hypoxia imaging: voxel size matters. Acta Oncol. 47, 1201–1210 (2008).

Schuetz, M. et al. Evaluating repetitive 18F-fluoroazomycin-arabinoside (18FAZA) PET in the setting of MRI guided adaptive radiotherapy in cervical cancer. Acta Oncol. 49, 941–947 (2010).

van Loon, J. et al. PET imaging of hypoxia using [18F] HX4: a phase I trial. Eur. J. Nucl. Med. Mol. Imaging 37, 1663–1668 (2010).

Ljungkvist, A. S. E., Bussink, J., Kaanders, J. H. A. M. & van der Kogel, A. J. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat. Res. 167, 127–145 (2007).

Reischl, G. et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA--first small animal PET results. J. Pharm. Pharm. Sci. 10, 203–211 (2007).

Thorwarth, D., Eschmann, S. M., Scheiderbauer, J., Paulsen, F. & Alber, M. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5, 152 (2005).

Lehtiö, K. et al. Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 59, 971–982 (2004).

Rajendran, J. G. et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin. Cancer Res. 12, 5435–5441 (2006).

Thorwarth, D., Eschmann, S. M., Holzner, F., Paulsen, F. & Alber, M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother. Oncol. 80, 151–156 (2006).

Eschmann, S. M. et al. Hypoxia-imaging with (18)F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother. Oncol. 83, 406–410 (2007).

Khamly, K. et al. Hypoxia in soft-tissue sarcomas on [18F]-fluoroazomycin arabinoside positron emission tomography (FAZA-PET) powerfully predicts response to radiotherapy and early relapse [abstract 35029]. Presented at the 14th Connective Tissue Oncology Society Annual Meeting, November 13–15 (London, 2008).

Spence, A. M. et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin. Cancer Res. 14, 2623–2630 (2008).

Dirix, P. et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J. Nucl. Med. 50, 1020–1027 (2009).

Lee, N. et al. Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 75, 101–108 (2009).

Li, L. et al. Comparison of 18F-fluoroerythronitroimidazole and 18F-fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin. Lung Cancer 11, 335–340 (2010).

Kikuchi, M. et al. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann. Nucl. Med. 25, 625–633 (2011).

Mortensen, L. S. et al. FAZA PET–CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother. Oncol. doi:10.1016/j.radonc.2012.09.015

Yue, J. et al. Measuring tumor hypoxia with 18F-FETNIM PET in esophageal squamous cell carcinoma: a pilot clinical study. Dis. Esophagus 25, 54–61 (2012).

Zips, D. et al. Exploratory prospective trial of hypoxia imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother. Oncol. doi:10.1016/j.radonc.2012.08.019.

Dearling, J. L. et al. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur. J. Nucl. Med. 25, 788–792 (1998).

Vävere, A. L. & Lewis, J. S. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 4893–4902 (2007).

Lewis, J. S. & Welch, M. J. PET imaging of hypoxia. Q. J. Nucl. Med. 45, 183–188 (2001).

O'Donoghue, J. A. et al. Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicar-bazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int. J. Radiat. Oncol. Biol. Phys. 61, 1493–1502 (2005).

Dence, C. S., Ponde, D. E., Welch, M. J. & Lewis, J. S. Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer. Nucl. Med. Biol. 35, 713–720 (2008).

Dehdashti, F. et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imaging 30, 844–850 (2003).

Dehdashti, F. et al. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J. Nucl. Med. 49, 201–205 (2008).

Dietz, D. W. et al. Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis. Colon Rectum 51, 1641–1648 (2008).

Minagawa, Y. et al. Assessment of tumor hypoxia by 62Cu-ATSM PET/CT as a predictor of response in head and neck cancer: a pilot study. Ann. Nucl. Med. 25, 339–345 (2011).

Yuan, H. et al. Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J. Nucl. Med. 47, 989–998 (2006).

Busk, M. et al. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int. J. Cancer 122, 2726–2734 (2008).

Rajendran, J. G. et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin. Cancer Res. 10, 2245–2252 (2004).

Christian, N. et al. Is 18F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer 14C-EF3 in animal tumor models. Radiother. Oncol. 97, 183–188 (2010).

Gagel, B. et al. pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia. BMC Cancer 7, 113 (2007).

Vera, P. et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-deoxy-D-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18F-fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother. Oncol. 98, 109–116 (2011).

Bussink, J., Kaanders, J. H. A. M. & van der Kogel, A. J. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother. Oncol. 67, 3–15 (2003).

Hoeben, B. A. et al. PET of hypoxia with 89Zr-labeled cG250-F(ab')2 in head and neck tumors. J. Nucl. Med. 51, 1076–1083 (2010).

Dubois, L. et al. Imaging of CA IX with fluorescent labelled sulphonamides distinguishes hypoxic and (re)-oxygenated cells in a xenograft tumour model. Radiother. Oncol. 92, 423–428 (2009).

Asakawa, C. et al. Radiosynthesis of three [11C]ureido-substituted benzenesulfonamides as PET probes for carbonic anhydrase IX in tumors. Bioorg. Med. Chem. Lett. 21, 7017–7020 (2011).

Sørensen, B. S., Alsner, J., Overgaard, J. & Horsman, M. R. Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH. Radiother. Oncol. 83, 362–366 (2007).

Komar, G. et al. 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J. Nucl. Med. 49, 1944–1951 (2008).

Ng, C. S. et al. Tumor blood flow measured by perfusion computed tomography and 15O-labeled water positron emission tomography: a comparison study. J. Comput. Assist. Tomogr. 33, 460–465 (2009).

Hermans, R. et al. Tumoural perfusion as measured by dynamic computed tomography in head and neck carcinoma. Radiother. Oncol. 53, 105–111 (1999).

Bisdas, S. et al. Outcome prediction after surgery and chemoradiation of squamous cell carcinoma in the oral cavity, oropharynx, and hypopharynx: use of baseline perfusion CT microcirculatory parameters vs. tumor volume. Int. J. Radiat. Oncol. Biol. Phys. 73, 1313–1318 (2009).

Truong, M. T. et al. Prediction of locoregional control in head and neck squamous cell carcinoma with serial CT perfusion during radiotherapy. AJNR Am. J. Neuroradiol. 32, 1195–1201 (2011).

Newbold, K. et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 29–37 (2009).

Pacheco-Torres, J., López-Larrubia, P., Ballesteros, P. & Cerdán, S. Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 24, 1–16 (2011).

Cooper, R. A. et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother. Oncol. 57, 53–59 (2000).

Donaldson, S. B. et al. Perfusion estimated with rapid dynamic contrast-enhanced magnetic resonance imaging correlates inversely with vascular endothelial growth factor expression and pimonidazole staining in head-and-neck cancer: a pilot study. Int. J. Radiat. Oncol. Biol. Phys. 81, 1176–1183 (2011).

Swanson, K. R. et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J. Nucl. Med. 50, 36–44 (2009).

Jansen, J. F. A. et al. Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int. J. Radiat. Oncol. Biol. Phys. 77, 1403–1410 (2010).

Hoskin, P. J. et al. Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry–initial observations. Int. J. Radiat. Oncol. Biol. Phys. 68, 1065–1071 (2007).

Loncaster, J. A. et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 54, 759–767 (2002).

Mayr, N. A. et al. Longitudinal changes in tumor perfusion pattern during the radiation therapy course and its clinical impact in cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 77, 502–508 (2010).

Andersen, E. K. F. et al. Dynamic contrast-enhanced MRI of cervical cancers: temporal percentile screening of contrast enhancement identifies parameters for prediction of chemoradioresistance. Int. J. Radiat. Oncol. Biol. Phys. 82, e485–e492 (2012).

Seddon, B. M. et al. A phase I study of SR-4554 via intravenous administration for noninvasive investigation of tumor hypoxia by magnetic resonance spectroscopy in patients with malignancy. Clin. Cancer Res. 9, 5101–5112 (2003).

Zhao, D., Jiang, L., Hahn, E. W. & Mason, R. P. Tumor physiologic response to combretastatin A4 phosphate assessed by MRI. Int. J. Radiat. Oncol. Biol. Phys. 62, 872–880 (2005).

Urtasun, R. C. et al. Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. Br. J. Cancer 74 (Suppl. XXVII), 209–212 (1996).

Hoebers, F. J. P. et al. Phase 1 study to identify tumour hypoxia in patients with head and neck cancer using technetium-99m BRU 59–21L. Eur. J. Nucl. Med. Mol. Imaging 29, 1206–1211 (2002).

Li, L. et al. Serial hypoxia imaging with 99mTc-HL91 SPECT to predict radiotherapy response in non small cell lung cancer. Am. J. Clin. Oncol. 29, 628–633 (2006).

Krishna, M. C. et al. Electron paramagnetic resonance imaging of tumor pO2 . Radiat. Res. 177, 376–386 (2012).

Swartz, H. M. et al. Clinical applications of EPR: overview and perspectives. NMR Biomed. 17, 335–351 (2004).

Yaromina, A. et al. Exploratory study of the prognostic value of microenvironmental parameters during fractionated irradiation in human squamous cell carcinoma xenografts. Int. J. Radiat. Oncol. Biol. Phys. 80, 1205–1213 (2011).

Nehmeh, S. A. et al. Reproducibility of intratumor distribution of 18F-fluoromisonidazole in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 235–242 (2008).

Lassen, P. et al. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother. Oncol. 94, 30–35 (2010).

Horsman, M. R. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumors: a review. Acta Oncol. 34, 571–587 (1995).

Horsman, M. R. Measurement of tumor oxygenation. Int. J. Radiat. Oncol. Biol. Phys. 42, 701–704 (1998).

Abolmaali, N. et al. Two or four hour [(1)(8)F]FMISO-PET in HNSCC. When is the contrast best? Nuklearmedizin 50, 22–27 (2011).

Evans, S. M. et al. Noninvasive detection of tumor hypoxia using the 2 nitroimidazole [18F] EF1. J. Nucl. Med. 41, 327–336 (2000).

Dubois, L. et al. [18F]EF3 is not superior to [18F]FMISO for PET-based hypoxia evaluation as measured in a rat rhabdomyosarcoma tumour model. Eur. J. Nucl. Med. Mol. Imaging 36, 209–218 (2009).

Eskola, O. et al. Tracer level electrophilic synthesis and pharmacokinetics of the hypoxia tracer [(18)F]EF5. Mol. Imaging Biol. 14, 205–212 (2012).

Koch, C. J. et al. Biodistribution and dosimetry of (18)F-EF5 in cancer patients with preliminary comparison of (18)F-EF5 uptake versus EF5 binding in human glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 37, 2048–2059 (2010).

Rasey, J. S., Hofstrand, P. D., Chin, L. K. & Tewson, T. J. Characterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J. Nucl. Med. 40, 1072–1079 (1999).

Barthel, H. et al. In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br. J. Cancer 90, 2232–2242 (2004).

Gronroos, T. et al. Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur. J. Nucl. Med. Mol. Imaging 31, 513–520 (2004).

Gronroos, T. et al. Pharmacokinetics of [18F]FETNIM: a potential marker for PET. J. Nucl. Med. 42, 1397–1404 (2001).

Piert, M. et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med. 46, 106–113 (2005).

Sorger, D. et al. 18F-Fluoroazomycinarabino-furanoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl. Med. Biol. 30, 317–326 (2003).

Doss, M. et al. Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT. Nucl. Med. Commun. 31, 1016–1024 (2010).

Kaneta, T. et al. Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann. Nucl. Med. 21, 101–107 (2007).

Riedl, C. C. et al. Tumor hypoxia imaging in orthotopic liver tumors and peritoneal metastasis: a comparative study featuring dynamic 18F-MISO and 124I-IAZG PET in the same study cohort. Eur. J. Nucl. Med. Mol. Imaging 35, 39–46 (2008).