Image processing based horizon sensor for estimating the orientation of sounding rockets, launch vehicles and spacecraft

CEAS Space Journal - Tập 15 - Trang 509-533 - 2022
Benjamin Braun1, Jochen Barf2
1German Space Operations Center (GSOC), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
2 Mobile Rocket Base (MORABA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Tóm tắt

The paper describes how the attitude of a sounding rocket, launch vehicle or satellite with respect to the Earth can be estimated from camera images of the Earth horizon. Details about detecting the horizon in the camera image, fitting hyperbolae or ellipses to the detected horizon curve and deriving the Earth nadir vector and the corresponding error covariance from the fitted conic section are given. The presented method works at low heights, where the projected horizon mostly appears to be hyperbolic, as well as at large heights, where the projected horizon mostly appears to be elliptic and it is irrelevant if the Earth is fully or only partially in the field of view of the camera. The method can be universally used to estimate the direction vectors and attitude with respect to any spherical celestial body such as the Sun or Moon. Using the example of a sounding rocket mission with two cameras aboard, it is illustrated how the estimates of the Earth nadir and the Sun direction vectors are fused with the measurements of a strapdown inertial measurement unit and a GPS receiver to obtain an accurate and continuous estimate of the three-dimensional orientation of the sounding rocket with respect to the Earth.

Tài liệu tham khảo

Dol Bahar, M. N., Effandi, M., Hassan, M., Hamzah, N., Arshad, A., Farr, X., Visagie, L., Steyn, W. H.: Modular CMOS horizon sensor for small satellite attitude determination and control subsystem. 20th Annual AIAA/USU Conference on Small Satellites (2006) Barf, J., Rapp, T., Bergmann, M., Geiger, S., Scharf, A., Wolz, F.: Horizon acquisition for attitude determination using image processing algorithms – Results of HORACE on REXUS 16. Proceedings of the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research (2015) Barf, J.: Development and implementation of an image-processing-based horizon sensor for sounding rockets. Julius-Maximilians-Universität Würzburg (2017) Black, H.D.: A passive system for determining the attitude of a satellite. AIAA J. 2(7), 1350–1351 (1964). https://doi.org/10.2514/3.2555 Canny, J.: A computational approach to edge detection. IEEE Transact. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851 Christian, J.A.: Optical navigation using iterative horizon reprojection. J. Guid. Control. Dyn. 39(5), 1092–1103 (2016). https://doi.org/10.2514/1.G001569 Christian, J.A., Robinson, S.B.: Noniterative horizon-based optical navigation by cholesky factorization. J. Guid. Control. Dyn. 39(12), 2755–2763 (2016). https://doi.org/10.2514/1.G000539 Christian, J.A.: Accurate planetary limb localization for image-based spacecraft navigation. J. Spacecr. Rocket. 54(3), 708–730 (2017). https://doi.org/10.2514/1.A33692 Christian, J.A.: A tutorial on horizon-based optical navigation and attitude determination with space imaging systems. IEEE Access 9, 19819–19853 (2021). https://doi.org/10.1109/ACCESS.2021.3051914 CubeSpace: CubeSense V3 – Interface Control Document. Version 1.3 (2020) Davies, E. R.: Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press, 4th ed. (2017). https://doi.org/10.1016/C2010-0-66926-4 Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692 Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999). https://doi.org/10.1109/34.765658 Grewal, M. S., Angus P. Andrews, A. P.: Kalman Filtering: Theory and Practice with MATLAB. Wiley, 4th ed. (2014) Groves, P. D.: Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House, 2nd ed. (2013) Heikkilá, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1106-1112 (1997). https://doi.org/10.1109/CVPR.1997.609468 Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Computat. Stat. Data Anal. 55(6), 2197–2208 (2011). https://doi.org/10.1016/j.csda.2010.12.012 Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006). https://doi.org/10.1109/TPAMI.2006.153 Kikuya, Y., Iwasaki, Y., Yatsu, Y., Matunaga, S.: Attitude determination algorithm using Earth sensor images and image recognition. Trans. Japan Soc. Aero. Space Sci. 64(2), 82–90 (2021). https://doi.org/10.2322/tjsass.64.82 Leonardo: Infrared Earth Sensor (IRES). Datasheet MM07787 1-17 (2017) Meller, D., Sripruetkiat, P.,Makovec, K.: Digital CMOS cameras for attitude determination. 14th Annual AIAA/USU Conference on Small Satellites (2000) Modenini, D.: Attitude determination from ellipsoid observations: a modified orthogonal procrustes problem. J. Guid. Control. Dyn. 41(10), 2324–2326 (2018). https://doi.org/10.2514/1.G003610 Modenini, D., Locarini, A., Zannoni, M.: Attitude sensor from ellipsoid observations: a numerical and experimental validation. Sensors 20(2), 433 (2020). https://doi.org/10.3390/s20020433 Montenbruck, O., Pfleger, O: Astronomy on the Personal Computer. 4th edition, Springer (2000). https://doi.org/10.1007/978-3-642-03436-7 Mortari, D., D’Souza, C.N., Zanetti, R.: Image processing of illuminated ellipsoid. J. Spacecr. Rocket. 53(3), 448–456 (2016). https://doi.org/10.2514/1.A33342 Nguyen, T., Cahoy, K., Marinan, A.: Attitude determination for small satellites with infrared earth horizon sensors. J. Spacecr. Rocket. 55(6), 1466–1475 (2018). https://doi.org/10.2514/1.A34010 National Imagery and Mapping Agency: Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems, Technical Report TR8350.2 (2004) Park, K., Mortari, D.: Planet or Moon image processing for spacecraft attitude estimation. J. Electron. Imaging 17(2), 023020 (2008). https://doi.org/10.1117/1.2938999 Rassmusen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2005). https://doi.org/10.7551/mitpress/3206.001.0001 Renshaw, D.T., Christian, J.A.: Subpixel localization of isolated edges and streaks in digital images. J. Imaging 6(5), 33 (2020). https://doi.org/10.3390/jimaging6050033 Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recogn. Lett. 14(10), 799–808 (1993). https://doi.org/10.1016/0167-8655(93)90062-I Steger, C., Ulrich, M., Wiedemann, C.: Machine Vision Algorithms and Applications. Wiley-VCH, 2nd ed (2018) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. Image Proces. 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, 1st ed. (2011). https://doi.org/10.1007/978-1-84882-935-0 Titterton, D. H., Weston, J., L.: Strapdown inertial navigation technology. The Institution of Electrical Engineers, 2nd ed. (2004) Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15(1), 59–76 (1997). https://doi.org/10.1016/S0262-8856(96)01112-2 Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://doi.org/10.1109/34.888718 Ziou, D., Tabbone, S.: Edge detection techniques – an overview. Int. J. Pattern Recogn. Image Anal. 8, 537–559 (1998)