Image encryption using spatial nonlinear optics

eLight - Tập 2 - Trang 1-10 - 2022
Junfeng Hou1, Guohai Situ1,2
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China

Tóm tắt

Optical technologies have been widely used in information security owing to its parallel and high-speed processing capability. However, the most critical problem with current optical encryption techniques is that the cyphertext is linearly related with the plaintext, leading to the possibility that one can crack the system by solving a set of linear equations with only two cyphertext from the same encryption machine. Many efforts have been taken in the last decade to resolve the linearity issue, but none of these offers a true nonlinear solution. Inspired by the recent advance in spatial nonlinear optics, here we demonstrate a true nonlinear optical encryption technique. We show that, owing to the self-phase modulation effect of the photorefractive crystal, the proposed nonlinear optical image encryption technique is robust against the known plaintext attack based on phase retrieval. This opens up a new avenue for optical encryption in the spatial nonlinear domain.

Tài liệu tham khảo

R.L. Renesse, Optical Document Security (Artech House, New York, 2004) R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297, 2026–2030 (2002) S.A. Goorden, M. Horstmann, A.P. Mosk, B. Škorić, P.W.H. Pinks, Quantum-secure authentication of a physical unclonable key. Optica 1, 421–424 (2014) D. Psaltis, Coherent optical information systems. Science 298, 1359–1363 (2002) B. Javidi, J.L. Horner, Optical pattern recognition for validation and security verification. Opt. Eng. 33, 1752–1756 (1994) B.L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, N. Peyghambarian, A polymeric optical pattern-recognition system for security verification. Nature 383, 58–60 (1996) P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Optics Lett. 20, 767–769 (1995) G. Situ, J. Zhang, Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584–1586 (2004) X. Li, T.-H. Lan, C.-H. Tien, M. Gu, Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 988–993 (2012) O. Matoba, B. Javidi, Encrypted optical memory system using three dimensional keys in the Fresnel domain. Opt. Lett. 24, 762–764 (1999) O. Matoba, B. Javidi, Encrypted optical storage with wavelength key and random codes. Appl. Optics 38, 6785–6790 (1999) O. Matoba, B. Javidi, Encrypted optical storage with angular multiplexing. Appl. Optics 38, 7288–7293 (1999) X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, Secure optical storage using fully phase encryption. Appl. Optics 39, 6689–6694 (2000) B. Javidi, A. Carnicer, M. Yamaguchi, T. Nomura, E. Pérez-Cabré, M.S. Millán, N.K. Nishchal, R. Torroba, J.F. Barrera, W. He, X. Peng, A. Stern, Y. Rivenson, A. Alfalou, C. Brosseau, C. Guo, J.T. Sheridan, G. Situ, M. Naruse, T. Matsumoto, I. Juvells, E. Tajahuerce, J. Lancis, W. Chen, X. Chen, P.W.H. Pinkse, A.P. Mosk, A. Markman, Roadmap on optical security. J. Opt. 18, 083001 (2016) O. Matoba, T. Nomura, E. Perez-Cabre, M.S. Millan, B. Javidi, Optical techniques for information security. Proc. IEEE 97, 1128–1148 (2009) A. Carnicer, M. Montes-Usategui, S. Arcos, I. Juvells, Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Optics Lett. 30, 1644–1646 (2005) X. Peng, P. Zhang, H. Wei, B. Yu, Known-plaintext attack on optical encryption based on double random phase keys. Optics Lett. 31, 1044–1046 (2006) Y. Frauel, A. Castro, T.J. Naughton, B. Javidi, Resistance of the double random phase encryption against various attacks. Optics Express 15, 10253–10265 (2007) G. Situ, U. Gopinathan, D.S. Monaghan, J.T. Sheridan, Cryptanalysis of optical security systems with significant output images. Appl. Opt. 46, 5257–5262 (2007) G. Li, W. Yang, D. Li, G. Situ, Cyphertext-only attack on the double random-phase encryption: Experimental demonstration. Opt. Express 25(8), 8690–8697 (2017). https://doi.org/10.1364/oe.25.008690 M. Liao, S. Zheng, S. Pan, D. Lu, W. He, G. Situ, X. Peng, Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electr. Adv. 4, 200016 (2021) Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine 32(3), 87–109 (2015). https://doi.org/10.1109/msp.2014.2352673 A. Alfalou, C. Brosseau, Dual encryption scheme of images using polarized light. Optics Lett. 35, 2185–2187 (2010) M. Cho, B. Javidi, Three-dimensional photon counting double-random-phase encryption. Optics Lett. 38, 3198–3201 (2013) W. Chen, X. Chen, Ghost imaging for three-dimensional optical security. Appl. Phys. Lett. 103, 221106 (2013) D. Peng, Z. Huang, Y. Liu, Y. Chen, F. Wang, S.A. Ponomarenko, Y. Cai, Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021) J. Liu, X. Xu, Q. Wu, J.T. Sheridan, G. Situ, Information encryption in phase space. Opt. Lett. 40, 859–862 (2015) L. Wang, Q. Wu, G. Situ, Chosen-plaintext attack on the double random polarization encryption. Opt. Express 27, 32158–32167 (2019) S. Yuan, L. Wang, X. Liu, X. Zhou, Forgery attack on optical encryption based on computational ghost imaging. Optics Lett. 45, 3917–3920 (2020) A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728–732 (2008) I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, An optical ultrafast random bit generator. Nat. Photonics 4, 58–61 (2010) A.M. Elshamy, A.N.Z. Rashed, A.E.A. Mohamed, O.S. Faragalla, L. Mu, S.A. Alshebeili, F..E.. Abd El-Samie, Optical image encryption based on chaotic baker map and double random phase encoding. J. Lightwave Technol. 31, 2533–2539 (2013) M. Segev, B. Crosignani, P.D. Porto, A. Yariv, G. Duree, G. Salamo, E. Sharp, Stability of photorefractive spatial solitons. Optics Lett. 19, 1296–1298 (1994) G. Situ, J.W. Fleischer, Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid. Nat. Photon. 14, 517–522 (2020) J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations. I. the Cauchy problem, general case. J Funct. Anal. 32, 1–32 (1979) C. Barsi, W. Wan, J.W. Fleischer, Imaging through nonlinear media using digital holography. Nat. Photonics 3, 211–215 (2009) U. Schnars, W. Jüptner, Digital Holography (Springer, Heidelberg, 2005) M. Tsang, D. Psaltis, F.G. Omenetto, Reverse propagation of femtosecond pulses in optical fibers. Optics Lett. 28, 1873–1875 (2003) G. Arora, V. Joshi, R.C. Mittal, Numerical simulation of nonlinear Schrödinger equation in one and two dimensions. Math. Models Computer Simulat. 11, 634–648 (2019) E. Figueiras, D. Olivieri, A. Paredes, H. Michinel, An open source virtual laboratory for the Schrödinger equation. Eur. J. Phys. 39, 055802 (2018) V.V. Voronov, Photo-induced light scattering in cesium doped variant strotnium niobate crystals. Soviet J. Quant. Electr. 10, 1346 (1980) Q.W. Song, C.-P. Zhang, P.J. Talbot, Self-defocusing, self-focusing, and speckle in LiNbO\(_3\) and LiNbO\(_3\): Fe crystals. Appl. Optics 32, 7266–7271 (1993) G. Zhang, Q.X. Li, P.P. Ho, S. Liu, Z.K. Wu, R.B. Alfano, Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO\(_3\):Fe. Appl. Optics 25, 2955–2959 (1986) C. Denz, M. Schwab, C. Weilnau, Transfers-Pattern Formation in Photorefractive Optics (Springer, New York, 2003) G.P. Agrawal, Induced focusing of optical beams in self-defocusing nonlinear media. Phys. Rev. Lett. 64, 2487–2490 (1990) J.M. Hickmann, A.S.L. Gomes, C.B. de Araújo, Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium. Phys. Rev. Lett. 68, 3547–3550 (1992) G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, Q. Sun, Noise amplification mechanism in LiNbO\(_3\): Fe crystal sheets. J. Opt. Soc. Am. Opt. Phys. 14, 2823–2830 (1997) B. Wang, C.C. Sun, W.S. Su, A.E.T. Chiou, Shift-tolerance property of an optical double-random phase-encoding encryption system. Appl. Optics 39, 4788–4793 (2000) D.V. Dylov, J.W. Fleischer, Nonlinear self-filtering of noisy images via dynamical stochastic resonance. Nat. Photon. 4, 323–328 (2010) B. Javidi, A. Sergent, G. Zhang, L. Guibert, Fault tolerance properties of a double phase encoding encryption technique. Opt. Eng. 32, 992–998 (1997) J.J. Healy, M.A. Kutay, J.T. Sheridan, Linear Canonical Transforms: Theory and Applications (Springer, New York, 2016) W. Stallings, Cryptography and Network Security (Prentice Hall, Englewood Cliffs, NJ, 2004) M. Puida, F. Ivanauskas, Light beam phase retrieval in nonlinear media: a computer simulation. Liet. Matem. Rink. 45, 504 (2005) C.-H. Lu, C. Barsi, M.O. Williams, J.N. Kutz, J.W. Fleischer, Phase retrieval using nonlinear diversity. Appl. Optics 52, 92–96 (2013) A. Sagiv, A. Ditkowski, R.H. Goodman, G. Fibich, Loss of physical reversibility in reversible systems. Physica D 410, 132515 (2020)