Image decomposition using optimally sparse representations and a variational approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Starck J.-L., Elad M. and Donoho D.L. (2005). Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10): 1570–1582
Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. In: University Lecture Series. Am. Math. Soc. 22 (2002)
Vese L. and Osher S. (2003). Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3): 553–572
Osher S., Sole A. and Vese L.A. (2003). Image decomposition and restoration using total variation minimization and the H − 1norm. Multiscale Model. Simul. 1(3): 349–370
Lieu, L., Vese, L.: Image restoration and decomposition via bounded total variation and negative Hilbert–Sobolev spaces. UCLA CAM report 1–21 (2005)
Le T. and Vese L. (2005). Image decomposition using the total variation and div(BMO). Multiscale Model. Simul. 4(2): 390–423
Chen S., Donoho D. and Saunder M. (1999). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(11): 33–61
Rudin L.I., Fatemi E. and Osher S. (1992). Nonlinear total variation based noise removal algorithms. Ph.D 60: 259–268
Candès, E.J., Donoho, D.L.: Curvelets-a surprisingly effective nonadaptive representation for objects with edges. In: Curves and Surface Fitting, pp. 105–120. Vanderbilt University Press, Nash-ville, (2000)
Candès E.J. and Donoho D.L. (2004). New tight frames of curvelets and optimal representations of objects with piecewise-C 2 singularities. Comm. Pure Appl. Math. 57: 219–266
Hu, Y.J., Huang, J., Kwong, S., Chan, Y.K.: Image fusion based visible watermarking using dual-tree complex wavelet transform. In: Proceedings of International Workshop Digital Watermarking, vol. LNCS 2939, pp. 86–100 (2003)
Fox, E.B.: Detection and localization of aerosol releases from sparse sensor measurements. MEng Thesis. MIT, Cambridge (2005)
Durand S. and Froment J. (2003). Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24: 1754–1767