Image Preprocessing in Classification and Identification of Diabetic Eye Diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramoff MD, Niemeijer M, Russell SR (2010) Automated detection of diabetic retinopathy: barriers to translation into clinical practice. Expert Rev Med Devices 7(2):287–296
Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. Proc Inst Mech Eng Part H J Eng Med 223(5):545–553
Association BD et al (1997) Retinal photography screening for diabetic eye disease. BDA, London
Bargshady G, Zhou X, Deo R, Soar J, Whittaker F, Wang H (2020) Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert Syst Appl 149:113305. https://doi.org/10.1016/j.eswa.2020.113305
Bezdek J, Pal MR, Keller J, Krisnapuram R (1999) Fuzzy models and algorithms for pattern recognition and image processing, 4th edn. Springer
Bond P. South africas vulnerability to the world capitalist crisis: how it worsened and how it might be reversed. OF THE NATION, p 609
Briot JP, Hadjeres G, Pachet FD (2017) Deep learning techniques for music generation—a survey. arXiv preprint arXiv:1709.01620
Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269
Chollet, F. (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
Coye T (2015) A novel retinal blood vessel segmentation algorithm for fundus images. MATLAB Central File Exchang
Du J, Michalska S, Subramani S, Wang H, Zhang Y (2019) Neural attention with character embeddings for hay fever detection from twitter. Health Inf Sci Syst 7(1):1–7
Du J, Zheng L, He J, Rong J, Wang H, Zhang Y (2020) An interactive network for end-to-end review helpfulness modeling. Data Sci Eng 5(3):261–279
Gao W, Peng M, Wang H, Zhang Y, Xie Q, Tian G (2018) Incorporating word embeddings into topic modeling of short text. Knowledge and Information Systems, pp 1–23
Gardner GG, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol 80(11):940–944
Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969
Gharaibeh NY (2017) A novel approach for detection of microaneurysms in diabetic retinopathy disease from retinal fundus images. Comput Inf Sci 10(1):1–15
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22):2402–2410
He J, Rong J, Sun L, Wang H, Zhang Y, Ma J (2020) A framework for cardiac arrhythmia detection from iot-based ecgs. World Wide Web 23:2835–2850. https://doi.org/10.1007/s11280-019-00776-9
Hu H, Li J, Wang H, Daggard G (2006) Combined gene selection methods for microarray data analysis. Knowledge-based intelligent information and engineering systems. Springer, Berlin, Heidelberg, pp 976–983
Huang G, Liu Z, Weinberger KQ (2017) Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2261–2269
Hutchinson A, McIntosh A, Peters J, Okeeffe C, Khunti K, Baker R, Booth A (2000) Effectiveness of screening and monitoring tests for diabetic retinopathy—a systematic review. Diabet Med 17(7):495–506
Jiang H, Zhou R, Zhang L, Wang H, Zhang Y (2019) Sentence level topic models for associated topics extraction. World Wide Web 22:2545–2560. https://doi.org/10.1007/s11280-018-0639-1
Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P (2019) Automated detection of glaucoma using deep learning convolution network (g-net). Multimed Tools Appl pp 1–23
Karegowda AG, Nasiha A, Jayaram M, Manjunath A (2011) Exudates detection in retinal images using back propagation neural network. Int J Comput Appl 25(3):25–31
Kaur M, Kaur M (2015) A hybrid approach for automatic exudates detection in eye fundus image. Int J 5(6):411–417
Khalil F, Wang H, Li J (2007) Integrating markov model with clustering for predicting web page accesses. In: The 13th Australasian world wide web conference, pp 63–74
Lam C, Yi D, Guo M, Lindsey T (2018) Automated detection of diabetic retinopathy using deep learning. AMIA Summit Translat Sci Proc 2018:147
Li H, Wang Y, Wang H, Zhou B (2017) Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20:1–19. https://doi.org/10.1007/s11280-017-0449-x
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533
Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng E, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43(12):2136–2155
Noronha K, Nayak J, Bhat SN (2006) Enhancement of retinal fundus Image to highlight the features for detection of abnormal eyes. TENCON 2006-2006 IEEE Region 10 Conference, pp 1–4
Osareh A, Mirmehdi M, Thomas B, Markham R (2003) Automated identification of diabetic retinal exudates in digital colour images. Br J Ophthalmol 87(10):1220–1223
Pandey D, Yin X, Wang H, Zhang Y (2016) Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Computer Vision and Image Understanding. 155. https://doi.org/10.1016/j.cviu.2016.12.005
Peng M, Zeng G, Sun Z, Huang J, Wang H, Tian G (2018) Personalized app recommendation based on app permissions. World Wide Web 21:1–16. https://doi.org/10.1007/s11280-017-0456-y
Peng M, Zhu J, Wang H, Li X, Zhang Y, Zhang X, Tian G (2018) Mining event-oriented topics in microblog stream with unsupervised multi-view hierarchical embedding. ACM Trans Knowl Discov Data 12:1–26. https://doi.org/10.1145/3173044
Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci 90:200–205
Sarki R, Ahmed K, Wang H, Zhang Y (2020) Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf Sci Syst 8(1):1–9
Sarki R, Ahmed K, Wang H, Zhang Y (2020) Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access 8:151133–151149. https://doi.org/10.1109/ACCESS.2020.3015258
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Sivaswamy J, Krishnadas SR, Datt Joshi G, Jain M, Syed Tabish AU (2014) Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In: 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. https://doi.org/10.1109/ISBI.2014.6867807
Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437
Solomon C, Breckon T (2011) Fundamentals of digital image processing: a practical approach with examples in Matlab. Wiley
Sopharak A, Uyyanonvara B (2007) Automatic exudates detection from diabetic retinopathy retinal image using fuzzy c-means and morphological methods. In: Proceedings of the third IASTED international conference advances in computer science and technology, pp 359–364
Supriya S, Siuly S, Wang H, Zhang Y (2020) Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst 8(1):1–15
Tan WR, Chan CS, Aguirre HE, Artgan TK (2017) Artwork synthesis with conditional categorical gans. IEEE international conference on image processing (ICIP), pp 3760–3764
Vallabha D, Dorairaj R, Namuduri K, Thompson H (2004) Automated detection and classification of vascular abnormalities in diabetic retinopathy. In: 28th asilomar conference on signals, systems and computers, vol. 2, pp 1625–1629
Yin J, Tang M, Cao J, Wang H, You M, Lin Y (2020) Adaptive online learning for vulnerability exploitation time prediction. In: International Conference on Web Information Systems Engineering, pp 252–266. Springer
Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H (2015) Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579
Youssif AA, Ghalwash AZ, Ghoneim AS, et al (2006) Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. Cairo international biomedical engineering conference, pp 1–5
Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, Yi Z (2019) Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl-Based Syst 175:12–25