Image De-Raining Using a Conditional Generative Adversarial Network

IEEE Transactions on Circuits and Systems for Video Technology - Tập 30 Số 11 - Trang 3943-3956 - 2020
He Zhang1, Vishwanath A. Sindagi2, Vishal M. Patel2
1[Adobe, San Jose, CA, USA]
2Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/TIP.2018.2836316

kingma, 2014, Adam: A method for stochastic optimization, arXiv 1412 6980

collobert, 2011, Torch7: A MATLAB-like environment for machine learning, NIPS Workshop BigLearn, 1

creswell, 2016, Task specific adversarial cost function, arXiv 1609 08661

salimans, 2016, Improved techniques for training GANs, Proc NIPS, 2226

wei, 2018, Semi-supervised transfer learning for image rain removal, arXiv 1807 11078

wang, 2018, Rain streak removal for single image via kernel guided CNN, arXiv 1808 08545

simonyan, 2014, Very deep convolutional networks for large-scale image recognition, arXiv 1409 1556

huang, 2016, Densely connected convolutional networks, arXiv 1608 06993

mirza, 2014, Conditional generative adversarial nets, arXiv 1411 1784

goodfellow, 2014, Generative adversarial nets, Proc NIPS, 2672

fan, 2018, Residual-guide feature fusion network for single image deraining, arXiv 1804 07493

fu, 2018, Lightweight pyramid networks for image deraining, arXiv 1805 06173

10.1109/CVPR.2017.19

he, 2014, Spatial pyramid pooling in deep convolutional networks for visual recognition, Proc Eur Conf Comput Vis, 346

10.1109/CVPR.2017.243

10.1109/CVPR.2017.660

10.1109/CVPR.2016.90

johnson, 2016, Perceptual losses for real-time style transfer and super-resolution, Proc Eur Conf Comput Vis, 694

10.1109/WACV.2017.145

10.1117/12.525375

10.1109/TPAMI.2010.161

10.1109/ICCV.2015.164

10.1109/TIP.2003.819861

10.1109/97.995823

10.1109/TIP.2005.859378

zhang, 2016, Convolutional sparse coding-based image decomposition, Proc BMVC

mao, 2016, Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, arXiv 1603 09056

radford, 2015, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv 1511 06434

ledig, 2016, Photo-realistic single image super-resolution using a generative adversarial network, arXiv 1609 04802

10.1109/CVPR.2016.278

ren, 2015, Faster R-CNN: Towards real-time object detection with region proposal networks, Proc Adv Neural Inf Process Syst, 91

everingham, 2015, The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results

10.1137/110854989

10.1109/TIP.2014.2299067

10.1109/CVPR.2018.00237

di, 2017, GP-GAN: Gender preserving GAN for synthesizing faces from landmarks, arXiv 1710 00962

ronneberger, 2015, U-Net: Convolutional networks for biomedical image segmentation, Proc Int Conf Med Image Comput Comput -Assist Intervent, 234

xie, 2012, Image denoising and inpainting with deep neural networks, Proc NIPS, 341

10.1109/TIP.2007.907073

10.1109/CVPR.2017.632

10.1109/WACV.2018.00019

10.1109/CVPR.2017.316

10.1109/CVPR.2018.00192

perera, 2017, In2I: Unsupervised multi-image-to-image translation using generative adversarial networks, arXiv 1711 09334

10.1109/TIP.2011.2179057

10.1109/ICCV.2015.388

zhao, 2016, Energy-based generative adversarial network, arXiv 1609 03126

10.1109/TMM.2013.2284759

zhu, 2017, Joint bi-layer optimization for single-image rain streak removal, Proc IEEE Int Conf Comput Vis, 2526

10.1109/CVPR.2016.299

10.1109/ICCV.2013.247

10.1109/CVPR.2017.186

10.1109/TIP.2017.2691802

10.1109/CVPR.2017.183

10.1109/CVPR.2018.00079

10.1137/090770783

10.1109/TIP.2005.852206

10.1109/CVPR.2004.1315077

yang, 2017, Textured image demoiréing via signal decomposition and guided filtering, IEEE Trans Image Process, 26, 3528

10.1109/ICME.2006.262572

10.1007/s11263-006-0028-6

10.1109/CVPR.2018.00577

10.1109/ICCV.2017.275

zhang, 2019, Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network, arXiv 1802 09655

di, 2019, Polarimetric thermal to visible face verification via attribute preserved synthesis, arXiv 1901 00889

10.1109/CVPR.2018.00337

10.1109/CVPR.2018.00111

xu, 2017, AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks, arXiv 1711 10485

10.1109/CVPR.2018.00649

liu, 2016, Coupled generative adversarial networks, Proc Adv Neural Inf Process Syst, 469

10.1109/ICCV.2017.629