Image Classification via Object-Aware Holistic Superpixel Selection
Tóm tắt
Từ khóa
Tài liệu tham khảo
vedaldi, 2008, Vlfeat An Open and Portable Library of Computer Vision Algorithms
yu, 2010, Improved local coordinate coding using local tangents, Proc Int Conf Mach Learn, 1215
bach, 2010, Convex Relaxations for Subset Selection
perronnin, 2010, Improving the fisher Kernel for large-scale image classification, Proc Eur Conf Comput Vis, 143
zhong, 2011, Efficient sparse modeling with automatic feature grouping, Proc Int Conf Mach Learn, 9
fan, 2008, Liblinear: A library for large linear classification, J Mach Learn Res, 9, 1871
rabinovich, 2007, Does Image Segmentation Improve Object Categorization
gu, 2009, Recognition using regions, Proc IEEE Conf Comput Vis Pattern Recognit, 1030
roth, 2006, Exploiting low-level image segmentation for object recognition, Proc DAGM Pattern Recogn Symp, 11, 10.1007/11861898_2
pantofaru, 2008, Object recognition by integrating multiple image segmentations, Proc European Conf Comput Vis, 481
chai, 2011, BiCos: A bi-level co-segmentation method for image classification, Proc Int Conf Comput Vis, 2579
welinder, 2010, Caltech-UCSD Birds 200
parkhi, 2012, Cats and dogs, Proc IEEE Conf Comput Vis Pattern Recognit, 1
li, 2007, Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, Comput Vis Image Understand, 106, 59, 10.1016/j.cviu.2005.09.012
yang, 2009, Linear spatial pyramid matching using sparse coding for image classification, Proc IEEE Conf Comput Vis Pattern Recognit, 1794
liu, 2011, In defense of soft-assignment coding, Proc Int Conf Comput Vis, 2486
chai, 2012, TriCos: A tri-level class-discriminative co-segmentation method for image classification, Proc Eur Conf Comput Vis, 794
moosmann, 2006, Learning saliency maps for object categorization, Proc Conf ECCV Workshop Represent Prior Knowl Vis
branson, 2010, Visual recognition with humans in the loop, Proc Eur Conf Comput Vis, 4, 438
parikh, 2008, Determining patch saliency using low-level context, Proc Eur Conf Comput Vis, 446
khan, 2009, Top-down color attention for object recognition, Proc Comput Vis Conf, 979