Image Classification via Object-Aware Holistic Superpixel Selection

IEEE Transactions on Image Processing - Tập 22 Số 11 - Trang 4341-4352 - 2013
Zilei Wang1, Jiashi Feng2, Shuicheng Yan2, Hongsheng Xi3
1Department of Automation, University of Science and Technology of China, Hefei, China
2[Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore]
3School of Information Science and Technology, University of Science and Technology of China, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/34.1000236

vedaldi, 2008, Vlfeat An Open and Portable Library of Computer Vision Algorithms

10.1111/j.1541-0420.2007.00843.x

yu, 2010, Improved local coordinate coding using local tangents, Proc Int Conf Mach Learn, 1215

bach, 2010, Convex Relaxations for Subset Selection

10.1007/s11263-009-0275-4

10.1109/TPAMI.2009.154

10.1023/B:VISI.0000029664.99615.94

perronnin, 2010, Improving the fisher Kernel for large-scale image classification, Proc Eur Conf Comput Vis, 143

zhong, 2011, Efficient sparse modeling with automatic feature grouping, Proc Int Conf Mach Learn, 9

10.1109/ICCV.2009.5459183

10.1109/CVPR.2010.5539839

fan, 2008, Liblinear: A library for large linear classification, J Mach Learn Res, 9, 1871

10.1007/s11263-011-0507-2

rabinovich, 2007, Does Image Segmentation Improve Object Categorization

gu, 2009, Recognition using regions, Proc IEEE Conf Comput Vis Pattern Recognit, 1030

10.1109/CVPR.2011.5995545

10.1109/CVPR.2006.68

roth, 2006, Exploiting low-level image segmentation for object recognition, Proc DAGM Pattern Recogn Symp, 11, 10.1007/11861898_2

pantofaru, 2008, Object recognition by integrating multiple image segmentations, Proc European Conf Comput Vis, 481

chai, 2011, BiCos: A bi-level co-segmentation method for image classification, Proc Int Conf Comput Vis, 2579

welinder, 2010, Caltech-UCSD Birds 200

10.5244/C.21.55

parkhi, 2012, Cats and dogs, Proc IEEE Conf Comput Vis Pattern Recognit, 1

10.1109/CVPR.2012.6248093

10.1109/CVPR.2010.5540018

li, 2007, Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, Comput Vis Image Understand, 106, 59, 10.1016/j.cviu.2005.09.012

yang, 2009, Linear spatial pyramid matching using sparse coding for image classification, Proc IEEE Conf Comput Vis Pattern Recognit, 1794

liu, 2011, In defense of soft-assignment coding, Proc Int Conf Comput Vis, 2486

10.1109/ICCV.2011.6126406

10.1109/TITB.2012.2189439

10.1109/TPAMI.2011.232

10.1109/CVPR.2005.16

10.1109/CVPR.2009.5206707

10.1109/ICCV.2011.6126343

10.1109/TPAMI.2011.231

chai, 2012, TriCos: A tri-level class-discriminative co-segmentation method for image classification, Proc Eur Conf Comput Vis, 794

10.1109/CVPR.2011.5995368

10.1109/CVPR.2008.4587598

moosmann, 2006, Learning saliency maps for object categorization, Proc Conf ECCV Workshop Represent Prior Knowl Vis

branson, 2010, Visual recognition with humans in the loop, Proc Eur Conf Comput Vis, 4, 438

parikh, 2008, Determining patch saliency using low-level context, Proc Eur Conf Comput Vis, 446

10.1109/CVPR.2010.5539963

khan, 2009, Top-down color attention for object recognition, Proc Comput Vis Conf, 979

10.1109/CVPR.2006.301