Illumination-robust variational optical flow using cross-correlation

Computer Vision and Image Understanding - Tập 114 - Trang 1104-1114 - 2010
József Molnár1, Dmitry Chetverikov2, Sándor Fazekas2
1Eötvös Loránd University, Budapest, Hungary
2Computer and Automation Research Institute, Budapest, Hungary

Tài liệu tham khảo

Mileva, 2007, Illumination-robust variational optical flow with photometric invariants, vol. 4713, 152 Shafer, 1985, Using color to separate reflection components, Color Research and Applications, 10, 210, 10.1002/col.5080100409 Gibson, 1966 Bruce, 1996 Horn, 1986 Todorovic, 1996, A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance, Perception, 25, 1235, 10.1068/p251235 Barron, 1994, Performance of optical flow techniques, International Journal of Computer Vision, 12, 43, 10.1007/BF01420984 Horn, 1981, Determining optical flow, Artificial Intelligence, 17, 185, 10.1016/0004-3702(81)90024-2 B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in: DARPA Image Understanding Workshop, 1981, pp. 121–130. Bertozzi, 2000, Vision-based intelligent vehicles: state of the art and perspectives, Robotics and Autonomous Systems, 31, 1, 10.1016/S0921-8890(99)00125-6 Kastrinaki, 2003, A survey of video processing techniques for traffic applications, Image and Vision Computing, 21, 359, 10.1016/S0262-8856(03)00004-0 Negahdaripour, 1996, Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 961, 10.1109/34.713362 Kim, 2005, Robust motion estimation under varying illumination, Image and Vision Computing, 23, 365, 10.1016/j.imavis.2004.05.010 T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, in: Proceedings of the European Conference on Computer Vision, vol. IV, 2004, pp. 25–36. C. Zach, T. Pock, H. Bischof, A duality based approach for realtime TV-L1 optical flow, in: Proceedings of the DAGM, 2007, pp. 214–223. Hermosillo, 2002, Variational methods for multimodal image matching, International Journal of Computer Vision, 50, 329, 10.1023/A:1020830525823 Alvarez, 2000, Reliable estimation of dense optical flow fields with large displacements, International Journal of Computer Vision, 39, 41, 10.1023/A:1008170101536 G.H. Valadez, Method and system for motion compensation in a temporal sequence of images, US Patent Application Publication, Pub. No.: US 2005/0265611 A1, 2005. J.-P. Pons, R. Keriven, O. Faugeras, G. Hermosillo, Variational stereovision and 3D scene flow estimation with statistical similarity measures, in: Proceedings of the International Conference on Computer Vision, vol. 1, 2003, pp. 597–602. S. Fazekas, D. Chetverikov, J. Molnar, An implicit non-linear numerical scheme for illumination-robust variational optical flow, in: Proceedings of the British Machine Vision Conference, 2009. URL <http://www.bmva.org/bmvc/2009/index.htm>. J. Molnar, D. Chetverikov, Illumination-robust variational optical flow based on cross-correlation, in: Proceedings of the 33rd Workshop of the Austrian Association for Pattern Recognition, 2009, pp. 119–128. J. Weickert, A. Bruhn, T. Brox, N. Papenberg, Mathematical models for registration and applications to medical imaging, in: Mathematics in Industry, vol. 10, Springer, Berlin, Heidelberg, 2006, pp. 103–136 (Chapter: A survey on variational optic flow methods for small displacements). Papenberg, 2006, Highly accurate optic flow computation with theoretically justified warping, International Journal of Computer Vision, 67, 141, 10.1007/s11263-005-3960-y Y. Mileva, A. Bruhn, J. Weickert, Illumination-robust variational optical flow with photometric invariants, in: DAGM-Symposium, 2007, pp. 152–162. Amiaz, 2006, Piecewise-smooth dense optical flow via level sets, International Journal of Computer Vision, 68, 111, 10.1007/s11263-005-6206-0 Amiaz, 2007, Coarse to over-fine optical flow estimation, Pattern Recognition, 60, 2496, 10.1016/j.patcog.2006.09.011 Press, 1992 S. Baker, S. Roth, D. Scharstein, M. Black, J. Lewis, R. Szeliski, A database and evaluation methodology for optical flow, in: Proceedings of the International Conference on Computer Vision, 2007, pp. 1–8. McCane, 2001, On benchmarking optical flow, Computer Vision and Image Understanding, 84, 126, 10.1006/cviu.2001.0930 University of Karlsruhe, Institute of Algorithms and Cognitive Systems, Image Sequence Server, 1998. i21www.ira.uka.de/image_sequences/. Bruhn, 2005, Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods, International Journal of Computer Vision, 61, 211, 10.1023/B:VISI.0000045324.43199.43 Mémin, 2002, Hierarchical estimation and segmentation of dense motion fields, International Journal of Computer Vision, 46, 129, 10.1023/A:1013539930159