Illumination-robust variational optical flow using cross-correlation
Tài liệu tham khảo
Mileva, 2007, Illumination-robust variational optical flow with photometric invariants, vol. 4713, 152
Shafer, 1985, Using color to separate reflection components, Color Research and Applications, 10, 210, 10.1002/col.5080100409
Gibson, 1966
Bruce, 1996
Horn, 1986
Todorovic, 1996, A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance, Perception, 25, 1235, 10.1068/p251235
Barron, 1994, Performance of optical flow techniques, International Journal of Computer Vision, 12, 43, 10.1007/BF01420984
Horn, 1981, Determining optical flow, Artificial Intelligence, 17, 185, 10.1016/0004-3702(81)90024-2
B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in: DARPA Image Understanding Workshop, 1981, pp. 121–130.
Bertozzi, 2000, Vision-based intelligent vehicles: state of the art and perspectives, Robotics and Autonomous Systems, 31, 1, 10.1016/S0921-8890(99)00125-6
Kastrinaki, 2003, A survey of video processing techniques for traffic applications, Image and Vision Computing, 21, 359, 10.1016/S0262-8856(03)00004-0
Negahdaripour, 1996, Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 961, 10.1109/34.713362
Kim, 2005, Robust motion estimation under varying illumination, Image and Vision Computing, 23, 365, 10.1016/j.imavis.2004.05.010
T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, in: Proceedings of the European Conference on Computer Vision, vol. IV, 2004, pp. 25–36.
C. Zach, T. Pock, H. Bischof, A duality based approach for realtime TV-L1 optical flow, in: Proceedings of the DAGM, 2007, pp. 214–223.
Hermosillo, 2002, Variational methods for multimodal image matching, International Journal of Computer Vision, 50, 329, 10.1023/A:1020830525823
Alvarez, 2000, Reliable estimation of dense optical flow fields with large displacements, International Journal of Computer Vision, 39, 41, 10.1023/A:1008170101536
G.H. Valadez, Method and system for motion compensation in a temporal sequence of images, US Patent Application Publication, Pub. No.: US 2005/0265611 A1, 2005.
J.-P. Pons, R. Keriven, O. Faugeras, G. Hermosillo, Variational stereovision and 3D scene flow estimation with statistical similarity measures, in: Proceedings of the International Conference on Computer Vision, vol. 1, 2003, pp. 597–602.
S. Fazekas, D. Chetverikov, J. Molnar, An implicit non-linear numerical scheme for illumination-robust variational optical flow, in: Proceedings of the British Machine Vision Conference, 2009. URL <http://www.bmva.org/bmvc/2009/index.htm>.
J. Molnar, D. Chetverikov, Illumination-robust variational optical flow based on cross-correlation, in: Proceedings of the 33rd Workshop of the Austrian Association for Pattern Recognition, 2009, pp. 119–128.
J. Weickert, A. Bruhn, T. Brox, N. Papenberg, Mathematical models for registration and applications to medical imaging, in: Mathematics in Industry, vol. 10, Springer, Berlin, Heidelberg, 2006, pp. 103–136 (Chapter: A survey on variational optic flow methods for small displacements).
Papenberg, 2006, Highly accurate optic flow computation with theoretically justified warping, International Journal of Computer Vision, 67, 141, 10.1007/s11263-005-3960-y
Y. Mileva, A. Bruhn, J. Weickert, Illumination-robust variational optical flow with photometric invariants, in: DAGM-Symposium, 2007, pp. 152–162.
Amiaz, 2006, Piecewise-smooth dense optical flow via level sets, International Journal of Computer Vision, 68, 111, 10.1007/s11263-005-6206-0
Amiaz, 2007, Coarse to over-fine optical flow estimation, Pattern Recognition, 60, 2496, 10.1016/j.patcog.2006.09.011
Press, 1992
S. Baker, S. Roth, D. Scharstein, M. Black, J. Lewis, R. Szeliski, A database and evaluation methodology for optical flow, in: Proceedings of the International Conference on Computer Vision, 2007, pp. 1–8.
McCane, 2001, On benchmarking optical flow, Computer Vision and Image Understanding, 84, 126, 10.1006/cviu.2001.0930
University of Karlsruhe, Institute of Algorithms and Cognitive Systems, Image Sequence Server, 1998. i21www.ira.uka.de/image_sequences/.
Bruhn, 2005, Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods, International Journal of Computer Vision, 61, 211, 10.1023/B:VISI.0000045324.43199.43
Mémin, 2002, Hierarchical estimation and segmentation of dense motion fields, International Journal of Computer Vision, 46, 129, 10.1023/A:1013539930159